The effect of surface termination on glucose oxidation using Ni-modified diamond electrodes
Johanna Svanberg-Larsson
Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
Search for more papers by this authorGeoffrey W. Nelson
Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
Search for more papers by this authorLuyun Jiang
Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
Search for more papers by this authorRobert J. Walker
Department of Materials, Imperial College London, Exhibition Road, London, SW7 2BP, UK
Search for more papers by this authorCorresponding Author
John S. Foord
Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
Corresponding author: e-mail [email protected], Phone: +44 (0) 1865 275967, Fax: +44 (0) 1865 275410Search for more papers by this authorJohanna Svanberg-Larsson
Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
Search for more papers by this authorGeoffrey W. Nelson
Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
Search for more papers by this authorLuyun Jiang
Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
Search for more papers by this authorRobert J. Walker
Department of Materials, Imperial College London, Exhibition Road, London, SW7 2BP, UK
Search for more papers by this authorCorresponding Author
John S. Foord
Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
Corresponding author: e-mail [email protected], Phone: +44 (0) 1865 275967, Fax: +44 (0) 1865 275410Search for more papers by this authorAbstract
Abstractauthoren This study describes the decoration of hydrogen- and oxygen-terminated boron-doped diamond electrodes (BDD) with three different loadings of Ni. The Ni was deposited electrochemically for 600, 400, and 100 s on both hydrogen-terminated BDD (BDDH) and oxygen-terminated BDD (BDDO). Scanning electron microscopy (SEM) showed that all Ni particles were roughly spherical in shape, but distribution and size varied with electrode termination: a uniform coverage with a particle size dependent on deposition duration was achieved on BDDH, but on BDDO the particles are deposited primarily along surface ridges and had similar sizes for all three deposition times. The performance of the samples was then tested using glucose sensing as an exemplar application. It was found that glucose oxidation varies greatly between electrodes at concentrations similar to those found in human blood. The variability between the samples was attributed to surface differences between electrodes and the difference in particle location. Amperometry using BDDs decorated with the 100 s Ni deposition gave a stable current response with respect to glucose concentration in the range 0.1–13 mM with much higher glucose oxidation currents being observed for the Ni nanoparticles deposited on the hydrogenated diamond surface.
References
- 1 R. Compton, J. Foord, and F. Marken, Electroanalysis 15(17), 1349–1363 (2003).
- 2 T. N. Rao and A. Fujishima, Diam. Relat. Mater. 9(3), 384–389 (2000).
- 3 I. Shpilevaya, W. Smirnov, S. Hirsz, N. Yang, C. E. Nebel, and J. S. Foord, RSC Adv. 4(2), 531 (2014).
- 4 L. Chen, J. Hu, and J. S. Foord, Phys. Status Solidi A 209(9), 1792–1796 (2012).
- 5 R. L. McCreery, Chem. Rev. 108(7), 2646–2687 (2008).
- 6 K. E. Toghill and R. G. Compton, Int. J. Electrochem. Sci. 5(9), 1246–1301 (2010).
- 7 X. Lu, J. Hu, J. S. Foord, and Q. Wang, J. Electroanal. Chem. 654(1-2), 38–43 (2011).
- 8 A. Kraft, Int. J. Electrochem. Sci. 2, 355–385 (2007).
- 9 M. Hupert, A. Muck, J. Wang, J. Stotter, Z. Cvackova, S. Haymond, Y. Show, and G. M. Swain, Diam. Relat. Mater. 12, 1940–1949 (2003).
- 10 G. R. Salazar-Banda, L. S. Andrade, P. A. P. Nascente, P. S. Pizani, R. C. Rocha-Filho, and L. A. Avaca, Electrochim. Acta 51(22), 4612–4619 (2006).
- 11 K. Hayashi, S. Yamanaka, H. Watanabe, T. Sekiguchi, H. Okushi, and K. Kajimura, J. Appl. Phys. 81(1997), 744–753 (1997).
- 12 M. Panizza and G. Cerisola, Electrochim. Acta 51(2), 191–199 (2005).
- 13 A. Tryk, K. Hashimoto, and A. Fujishima, J. Electrochem. Soc. 146(3), 1081–1087 (1998).
- 14 A. Tryk, K. Hashimoto, and A. Fujishima, J. Electrochem. Soc. 145(6), 1870–1876 (1998).
- 15 H. Kawarada, Surf. Sci. Rep. 26(7), 205–259 (1996).
- 16 M. I. Landstrass and K. V. Ravi, Appl. Phys. Lett. 55(1989), 975–977 (1989).
- 17 C. E. Nebel, Science 318, 1391–1393 (2007).
- 18 F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Phys. Rev. Lett. 85, 3472–3475 (2000).
- 19 L. Ley, Surface Conductivity of Diamond, in: CVD Diamond for Electronic Devices and Sensors, edited by R. S. Sussmann, (John Wiley & Sons, Chichester, (2009)), chap. 4.
- 20 C. M. Welch and R. G. Compton, Anal. Bioanal. Chem. 384, 601619 (2006).
- 21 J. Hu, X. Lu, J. S. Foord, and Q. Wang, Phys. Status Solidi A 206(9), 2057–2062 (2009).
- 22 B. Liu, J. Hu, and J. S. Foord, Electrochem. Commun. 19(1), 46–49 (2012).
- 23 C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev. 105, 1025–1102 (2005).
- 24 K. E. Toghill and R. G. Compton, Electroanalysis 22(17–18), 1947–1956 (2010).
- 25 K. E. Toghill, L. Xiao, M. A. Phillips, and R. G. Compton, Sens. Actuators B 147(2), 642–652 (2010).
- 26 L. A. Hutton, M. Vidotti, A. N. Patel, M. E. Newton, P. R. Unwin, and J. V. MacPherson, J. Phys. Chem. C 115, 1649–1658 (2011).
- 27 K. Toghill, L. Xiao, N. Stradiotto, and R. Compton, Electroanalysis 22(5), 491–500 (2010).
- 28 M. Fleischmann, K. Korinek, and D. Pletcher, J. Electroanal. Chem. Interfacial Electrochem. 34, 499–503 (1972).
- 29 N. R. Stradiotto, K. E. Toghill, L. Xiao, A. Moshar, and R. G. Compton, Electroanalysis 21(24), 2627–2633 (2009).
- 30 J. Taraszewska and G. Roslonek, J. Electroanal. Chem. 364, 209–213 (1994).
- 31 J. C. Harfield, K. E. Toghill, C. Batchelor-McAuley, C. Downing, and R. G. Compton, Electroanalysis 23(4), 931–938 (2011).
- 32 M. Fleischmann, K. Korinek, and D. Pletcher, J. Electroanal. Chem. Interfacial Electrochem. 31(1), 39–49 (1971).
- 33 G. W. Muna, M. Partridge, H. Sirhan, B. VerVaet, N. Guerra, and H. Garner, Electroanalysis 26(10), 2145–2151 (2014).
- 34 G. Yang, E. Liu, N. W. Khun, and S. P. Jiang, J. Electroanal. Chem. 627(1–2), 51–57 (2009).
- 35 I. V. Shpilevaya, Surface Characterisation and Functional Properties of Modified Diamond Electrodes, Ph.D. thesis, University of Oxford, Oxford, UK, 2014.
- 36 A. Salimi and M. Roushani, Electrochem. Commun. 7(9), 879–887 (2005).
- 37 C. Zhao, C. Shao, M. Li, and K. Jiao, Talanta 71(4), 1769–1773 (2007).
- 38 A. Safavi, N. Maleki, and E. Farjami, Biosens. Bioelectron. 24(6), 1655–1660 (2009).
- 39 W. Dai, M. Li, S. Gao, H. Li, C. Li, S. Xu, X. Wu, and B. Yang, Electrochim. Acta 187, 413–421 (2016).
- 40 W. Visscher and E. Barendrecht, Electrochim. Acta 25(5), 651–655 (1980).
- 41 R. Barnard, C. F. Randell, and F. L. Tye, J. Appl. Electrochem. 10(1), 109–125 (1980).
- 42 X. Cheng, S. Zhang, H. Zhang, Q. Wang, P. He, and Y. Fang, Food Chem. 106(2), 830–835 (2008).
- 43 S. Kerzenmacher, J. Ducrée, R. Zengerle, and F. von Stetten, J. Power Sources 182(1), 1–17 (2008).
- 44 C. Jin and I. Taniguchi, Mater. Lett. 61(11–12), 2365–2367 (2007).
- 45 S. Prilutsky, P. Schechner, E. Bubis, V. Makarov, E. Zussman, and Y. Cohen, Electrochim. Acta 55(11), 3694–3702 (2010).