Magnetically controlled space charge capacitance at La1−xSrxMnO3/SrxLa1−xTiO3 interfaces
Corresponding Author
Rainer Schmidt
Facultad de Ciencias Físicas, Dpto. Física Aplicada III, Universidad Complutense de Madrid, GFMC, 28040 Madrid, Spain
Unidad Asociada “Laboratorio de heteroestructuras con aplicación en espintrónica”, UCM/CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain
Corresponding author: e-mail [email protected], Phone: 0034 91 394 4445, Fax: 0034 91 394 5196
Search for more papers by this authorJavier García-Barriocanal
Facultad de Ciencias Físicas, Dpto. Física Aplicada III, Universidad Complutense de Madrid, GFMC, 28040 Madrid, Spain
Unidad Asociada “Laboratorio de heteroestructuras con aplicación en espintrónica”, UCM/CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain
Search for more papers by this authorMaría Varela
Facultad de Ciencias Físicas, Dpto. Física Aplicada III, Universidad Complutense de Madrid, GFMC, 28040 Madrid, Spain
Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
Search for more papers by this authorMar García-Hernández
Instituto de Ciencia de Materiales de Madrid – Consejo Superior de Investigaciones Científicas (ICMM–CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
Search for more papers by this authorCarlos León
Facultad de Ciencias Físicas, Dpto. Física Aplicada III, Universidad Complutense de Madrid, GFMC, 28040 Madrid, Spain
Unidad Asociada “Laboratorio de heteroestructuras con aplicación en espintrónica”, UCM/CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain
Search for more papers by this authorJacobo Santamaría
Facultad de Ciencias Físicas, Dpto. Física Aplicada III, Universidad Complutense de Madrid, GFMC, 28040 Madrid, Spain
Unidad Asociada “Laboratorio de heteroestructuras con aplicación en espintrónica”, UCM/CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain
Search for more papers by this authorCorresponding Author
Rainer Schmidt
Facultad de Ciencias Físicas, Dpto. Física Aplicada III, Universidad Complutense de Madrid, GFMC, 28040 Madrid, Spain
Unidad Asociada “Laboratorio de heteroestructuras con aplicación en espintrónica”, UCM/CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain
Corresponding author: e-mail [email protected], Phone: 0034 91 394 4445, Fax: 0034 91 394 5196
Search for more papers by this authorJavier García-Barriocanal
Facultad de Ciencias Físicas, Dpto. Física Aplicada III, Universidad Complutense de Madrid, GFMC, 28040 Madrid, Spain
Unidad Asociada “Laboratorio de heteroestructuras con aplicación en espintrónica”, UCM/CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain
Search for more papers by this authorMaría Varela
Facultad de Ciencias Físicas, Dpto. Física Aplicada III, Universidad Complutense de Madrid, GFMC, 28040 Madrid, Spain
Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
Search for more papers by this authorMar García-Hernández
Instituto de Ciencia de Materiales de Madrid – Consejo Superior de Investigaciones Científicas (ICMM–CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
Search for more papers by this authorCarlos León
Facultad de Ciencias Físicas, Dpto. Física Aplicada III, Universidad Complutense de Madrid, GFMC, 28040 Madrid, Spain
Unidad Asociada “Laboratorio de heteroestructuras con aplicación en espintrónica”, UCM/CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain
Search for more papers by this authorJacobo Santamaría
Facultad de Ciencias Físicas, Dpto. Física Aplicada III, Universidad Complutense de Madrid, GFMC, 28040 Madrid, Spain
Unidad Asociada “Laboratorio de heteroestructuras con aplicación en espintrónica”, UCM/CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain
Search for more papers by this authorAbstract
This work reports on magnetocapacitance (MC) effects in epitaxial heterostructures of nominally 15 unit cells (u.c.) LaMnO3 (LMO) and 2 u.c. SrTiO3 (STO) with an alternating layer-repetition rate of 8: (LMO15/STO2)8. Epitaxial multilayer growth at high temperatures (900 °C) activates a selective inter-diffusion of La3+ and Sr2+ cations across the interfaces, which gives rise to Sr p-doping of the LMO and La n-doping of the STO layers. MC effects at the buried La1–xSrxMnO3/SrxLa1–xTiO3 (LSMO/SLTO) interfaces are probed by frequency, temperature and magnetic field dependent AC impedance spectroscopy. The technique is shown to be appropriate to account for the separate analysis of different resistance and capacitance contributions at the buried interfaces. As a result of the La/Sr inter-diffusion process, Schottky barriers are formed at the LSMO/SLTO interfaces, which give rise to massive MC of up to ≈ −200% in the out-of-plane film direction. The capacitance of the manganite-titanate LSMO/SLTO interfaces may be coupled indirectly to the resistance of the LSMO layers, because the Schottky space-charge layers and their capacitance can be modulated by varying the concentration of highly mobile charge carriers in the LSMO with a magnetic field.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
pssa201533036-sup-0001-SupFig-S1.pdf58.7 KB | Figure S1. (a) H- dependence (Oe) of the CPE exponent n (dimensionless) at selected temperatures, representing the non-ideality of the in-plane (ip) and out-of-plane (oop) contributions to the overall impedance measured with co-planar and parallel-plate electrode configurations. (b) T- dependence (K) of the CPE exponent n at H = 100 Oe and H = 200 Oe formeasurements taken with the co-planar and parallel-plate electrode configurations, representing the non-ideality of the in-plane (ip) and out-of-plane (oop) contributions to the overall impedance. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 J. Mannhart and D. G. Schlom, Science 327, 1607 (2010).
- 2 H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nature Mater. 11, 103 (2012).
- 3 A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature 419, 378 (2002).
- 4 J. Chakhalian, J. W. Freeland, H. U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, and B. Keimer, Science 318, 1114 (2007).
- 5 F. Y. Bruno, R. Schmidt, M. Varela, J. Garcia-Barriocanal, A. Rivera-Calzada, F. A. Cuellar, C. Leon, P. Thakur, J. C. Cezar, N. B. Brookes, M. Garcia-Hernandez, E. Dagotto, S. J. Pennycook, and J. Santamaria, Adv. Mater. 3, 1468 (2013).
- 6 P. Moetakef, J. R. Williams, D. G. Ouellette, A. P. Kajdos, D. Goldhaber-Gordon, S. J. Allen, and S. Stemmer, Phys. Rev. X2, 021014 (2012).
- 7 M. Huijben, Y. Liu, H. Boschker, V. Lauter, R. Egoavil, J. Verbeeck, S. G. E. te Velthuis, G. Rijnders, and G. Koster, Adv. Mater. Interfaces 2, 1400416 (2015).
- 8 C. J. Li, W. M. Lü, X. R. Wang, X. P. Qiu, L. Sun, S. W. Zeng, Z. Q. Liu, Z. Huang, Y. L. Zhao, Ariando, and T. Venkatesan, Adv. Mater. Interfaces 2, 1400437 (2015).
- 9 F. Cossu, J. Jilili, and U. Schwingenschlögl, Adv. Mater. Interfaces 1, 1400057 (2014).
- 10 R. Jany, C. Richter, C. Woltmann, G. Pfanzelt, B. Förg, M. Rommel, T. Reindl, U. Waizmann, J. Weis, J. A. Mundy, D. A. Muller, H. Boschker, and J. Mannhart, Adv. Mater. Interfaces 1, 1300031 (2014).
- 11 R. Quesada-Cabrera, C. Sotelo-Vazquez, J. C. Bear, J. A. Darr, and I. P. Parkin, Adv. Mater. Interfaces 1, 1400069 (2014).
- 12 D. Mukherjee, M. Hordagoda, P. Lampen, M.-H. Phan, H. Srikanth, S. Witanachchi, and P. Mukherjee, Phys. Rev. B 91, 054419 (2015).
- 13 S. Das, A. Herklotz, E. Jia Guo, and K. Dörr, J. Appl. Phys. 115, 143902 (2014).
- 14 A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
- 15 A. Gozar, G. Logvenov, L. F. Kourkoutis, A. T. Bollinger, L. A. Giannuzzi, D. A. Muller, and I. Bozovic, Nature 455, 782 (2008).
- 16 M. Fiebig, T. Lottermoser, D. Frohlich, A. V. Goltsev, and R. V. Pisarev, Nature 419, 818 (2002).
- 17 N. A. Spaldin, S.-W. Cheong, and R. Ramesh, Phys. Today 63, 38 (2010).
- 18 T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).
- 19 J. Hemberger, P. Lunkenheimer, R. Fichtl, H. A. Krug von Nidda, V. Tsurkan, and A. Loidl, Nature 434, 364 (2005).
- 20 J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
- 21 M. Mostovoy, Nature Mater. 9, 188 (2010).
- 22 I. Pirrotta, R. Schmidt, A. J. Dos Santos-García, M. Garcia-Hernandez, E. Morán, and M. Á Alario-Franco, J. Solid State Chem. 225, 321 (2015).
- 23 R. Schmidt, J. Ventura, E. Langenberg, N. M. Nemes, C. Munuera, M. Varela, M. Garcia-Hernandez, C. Leon, and J. Santamaria, Phys. Rev. B 86, 035113 (2012).
- 24 G. Catalan, Appl. Phys. Lett. 88, 102902 (2006).
- 25 R. Schmidt, in: CRC Concise Encyclopedia of Nanotechnology, edited by, B. I. Kharisov, O. V. Kharissova, and U. Ortiz-Mendez (CRC Press Taylor & Francis Group, Boca Raton, 2015).
- 26 D. Mukherjee, J. Devkota, A. Ruiz, M. Hordagoda, R. Hyde, S. Witanachchi, P. Mukherjee, H. Srikanth, and M. H. Phan, J. Appl. Phys. 116, 123912 (2014).
- 27 R. Schmidt, W. Eerenstein, T. Winiecki, F. D. Morrison, and P. A. Midgley, Phys. Rev. B 75, 245111 (2007).
- 28 J. T. S. Irvine, D. C. Sinclair, and A. R. West, Adv. Mater. 2, 132 (1990).
- 29 A. Podpirka and S. Ramanathan, J. Appl. Phys. 109, 014106 (2011).
- 30 Y. Zhou and S. Ramanathan, J. Appl. Phys. 111, 084508 (2012).
- 31 R. Schmidt, W. Eerenstein, and P. A. Midgley, Phys. Rev. B 79, 214107 (2009).
- 32 J. Garcia-Barriocanal, F. Y. Bruno, A. Rivera-Calzada, Z. Sefrioui, N. M. Nemes, M. Garcia-Hernández, J. Rubio-Zuazo, G. R. Castro, M. Varela, S. J. Pennycook, C. Leon, and J. Santamaria, Adv. Mater. 22, 627 (2010).
- 33 J. Garcia-Barriocanal, J. C. Cezar, F. Y. Bruno, P. Thakur, N. B. Brookes, C. Utfeld, A. Rivera-Calzada, S. R. Giblin, J. W. Taylor, J. A. Duffy, S. B. Dugdale, T. Nakamura, K. Kodama, C. Leon, S. Okamoto, and J. Santamaria, Nature Commun. 1, 82 (2010).
- 34 R. K. Zheng, H. U. Habermeier, H. L. W. Chan, C. L. Choy, and H. S. Luo, Phys. Rev. B 81, 104427 (2010).
- 35
E. Barsukov and
J. Macdonald,
Impedance Spectroscopy: Theory, Experiment and Applications
(John Wiley & Sons Inc,
Hoboken,
2005).
10.1002/0471716243 Google Scholar
- 36 P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov, and A. Loidl, Phys. Rev. B 66, 052105 (2002).
- 37 C. Ko, Y. Zhou, and S. Ramanathan, J. Vac. Sci. Technol. A 30, 011501 (2012).
- 38 D. Niermann, F. Waschkowski, J. de Groot, M. Angst, and J. Hemberger, Phys. Rev. Lett. 109, 016405 (2012).
- 39 C. H. Hsu and F. Mansfeld, Corrosion 57, 747 (2001).
- 40 J. Matsuno, A. Sawa, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 92, 122104 (2008).