Sequences of stilboflavin C: towards the peptaibiome of the filamentous fungus Stilbella (= Trichoderma) flavipes
Thomas Degenkolb
Institute for Insect Biotechnology, Department of Applied Entomology, Interdisciplinary Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
Search for more papers by this authorLutz Götze
Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, 35394 Giessen, Germany
Search for more papers by this authorHans von Döhren
Biochemistry and Molecular Biology OE 2, Institute of Chemistry, Technical University of Berlin, Franklinstrasse 29, 10587 Berlin, Germany
Schillerstrasse 34, 10627 Berlin, Germany
Search for more papers by this authorAndreas Vilcinskas
Institute for Insect Biotechnology, Department of Applied Entomology, Interdisciplinary Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, 35394 Giessen, Germany
Search for more papers by this authorCorresponding Author
Hans Brückner
Institute for Insect Biotechnology, Department of Applied Entomology, Interdisciplinary Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
Correspondence to: Hans Brückner, Interdisciplinary Research Center for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany. E-mail: [email protected]Search for more papers by this authorThomas Degenkolb
Institute for Insect Biotechnology, Department of Applied Entomology, Interdisciplinary Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
Search for more papers by this authorLutz Götze
Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, 35394 Giessen, Germany
Search for more papers by this authorHans von Döhren
Biochemistry and Molecular Biology OE 2, Institute of Chemistry, Technical University of Berlin, Franklinstrasse 29, 10587 Berlin, Germany
Schillerstrasse 34, 10627 Berlin, Germany
Search for more papers by this authorAndreas Vilcinskas
Institute for Insect Biotechnology, Department of Applied Entomology, Interdisciplinary Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, 35394 Giessen, Germany
Search for more papers by this authorCorresponding Author
Hans Brückner
Institute for Insect Biotechnology, Department of Applied Entomology, Interdisciplinary Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
Correspondence to: Hans Brückner, Interdisciplinary Research Center for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany. E-mail: [email protected]Search for more papers by this authorAbstract
Filamentous fungi of the genus Stilbella are recognized as an abundant source of naturally occurring α-aminoisobutyric acid-containing peptides. The culture broth of Stilbella (Trichoderma) flavipes CBS 146.81 yielded a mixture of peptides named stilboflavins (SF), and these were isolated and separated by preparative TLC into groups named SF-A, SF-B, and SF-C. Although all three of these groups resolved as single spots on thin-layer chromatograms, HPLC analysis revealed that each of the groups represents very microheterogeneous mixtures of closely related peptides. Here, we report on the sequence analysis of SF-C peptides, formerly isolated by preparative TLC. HPLC coupled to QqTOF-ESI-HRMS provided the sequences of 10 16-residue peptides and five 19-residue peptides, all of which were N-terminally acetylated. In contrast to the previously described SF-A and SF-B peptaibols, SF-C peptaibols contain Ser-Alaol or Ser-Leuol, which are rarely found as C-termini, and repetitive Leu-Aib-Gly sequences, which have not been detected in peptaibols before. Taking the previously determined sequences of SF-A and SF-B into account, the entirety of peptides produced by S. flavipes (the ‘peptaibiome’) approaches or exceeds 100 non-ribosomally biosynthesized peptaibiotics. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
References
- 1Brückner H, Nuber K, Reinecke C. Chromatographic detection of bioactive Aib-peptides in molds of the genus Stilbella. Fresenius Z. Anal. Chem. 1989; 333: 777–778.
- 2Neumann NKN, Stoppacher N, Zeilinger S, Degenkolb T, Brückner H, Schuhmacher R. The Peptaibiotics Database – a comprehensive online resource. Chem. Biodivers. 2015; 12: 743–751.
- 3 C Toniolo, H Brückner (eds.). Peptaibiotics. Fungal Peptides Containing α-Dialkyl α-Amino Acids. Verlag Helvetica Chimica Acta, Zürich and Wiley-VCH: Weinheim, 2009.
- 4Seifert KA. A monography of Stilbella and some allied hyphomycetes. Stud. Mycol. 1985; 27: 1–235.
- 5Seifert KA, Samuels GJ. Two new hypocrealean fungi with synnematous anamorphs. Mycologia 1997; 89: 512–520.
- 6Jaworski A, Brückner H. Sequences of polypeptide antibiotics stilboflavins, natural peptaibol libraries of the mold Stilbella flavipes. J. Pept. Sci. 2001; 7: 433–447.
- 7Brückner H, Degenkolb T. The peptaibiome of the fungus Stilbella flavipes. Sequences of the peptaibol antibiotic stilboflavin C. In Peptides 2014, Proceedings of the 33rd European Peptide Symposium, E Naydenova , T Pajpanovam , D Danalev (eds.). Bulgarian Peptide Society: Sofia, 2015; 294–295.
- 8Jaklitsch WM, Voglmayr H. New combinations in Trichoderma (Hypocreaceae, Hypocreales). Mycotaxon 2013; 126: 143–156.
- 9Bissett J, Gams W, Jaklitsch W, Samuels GJ. Accepted Trichoderma names in the year 2015. IMA Fungus 2015; 6: 263–295.
- 10Röhrich CR, Iversen A, Jaklitsch WM, Voglmayr H, Berg A, Dörfelt H, Thrane U, Vilcinskas A, Nielsen KF, von Döhren H, Brückner H, Degenkolb T. Hypopulvins, novel peptaibiotics from the polyporicolous fungus Hypocrea pulvinata, are produced during infection of its natural hosts. Fungal Biol. 2012; 116: 1219–1231.
- 11Röhrich CR, Iversen A, Jaklitsch WM, Voglmayr H, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T. Screening the biosphere: the fungicolous fungus Trichoderma phellinicola, a prolific source of hypophellins, new 17-, 18-, 19-, and 20-residue peptaibiotics. Chem. Biodivers. 2013; 10: 787–812.
- 12Röhrich CR, Jaklitsch WM, Voglmayr H, Iversen A, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. Fungal Divers. 2014; 69: 117–146.
- 13Leimer KR, Rice RH, Gehrke CW. Complete mass spectra of N-trifluoroacetyl-n-butyl esters of amino acids. J. Chromatogr. 1977; 141: 121–144.
- 14Küsters E, Portmann A. Enantiomeric separation of amino alcohols by gas chromatography on a chiral stationary phase. Influence of the perfluoroacylating reagent on the separation. J. High Res. Chromatogr 1994; 17: 639–642.
- 15Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chaverri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ. The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol. Prog. 2008; 7: 177–219.
- 16Jaworski A, Brückner H. New sequences and new fungal producers of peptaibol antibiotics antiamoebins. J. Pept. Sci. 2000; 6: 149–167.
10.1002/(SICI)1099-1387(200004)6:4<149::AID-PSC235>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 17Brückner H, Graf H, Bokel M. Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei. Part B. Experientia 1984; 40: 1189–1197.
- 18Jaworski A, Brückner H, Maisch A. Elutionsumkehr mikroheterogener Peptidantibiotika an einer Fluorkohlenwasserstoff-Phase. Vergleich zu einer Octadecylsilyl-Phase (Reversal of the elution order of microheterogenous peptide antibiotics on a fluorocarbon column. Comparison to an octadecylsilyl column). GIT Spezial Chromatographie 1998; 18: 86–89.
- 19Krause C, Kirschbaum J, Brückner H. Peptaibiomics: an advanced, rapid and selective analysis of peptaibiotics/peptaibols by SPE/LC-ES-MS. Amino Acids 2006; 30: 435–443.
- 20Gessmann R, Brückner H, Aivaliotis M, Petratos K. The crystal structure of Z-Gly-Aib-Gly-Aib-OtBu. J. Pept. Sci. 2015; 21: 476–479.
- 21https://peptaibiotics-database.boku.ac.at/django/ [last accessed 24 April 2016].
- 22Peggion C, Formaggio F, Crisma M, Epand RF, Epand RM, Toniolo C. Trichogin: a paradigm for lipopeptaibols. J. Pept. Sci. 2003; 9: 679–689.
- 23Mitova MI, Murphy AC, Lang G, Blunt JW, Cole ALJ, Ellis G, Munro MHG. Evolving trends in the dereplication of natural product extracts. 2. The isolation of chrysaibol, an antibiotic peptaibol from a New Zealand sample of the mycoparasitic fungus Sepedonium chrysospermum. J. Nat. Prod. 2008; 71: 1600–1603.
- 24Fox RO, Richards FM. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution. Nature 1982; 300: 325–330.
- 25Lork DK, Unger KK, Brückner H, Hearn MTW. Retention behaviour of paracelsin peptides on reversed-phase silicas with varying n-alkyl chain length and ligand density. J. Chromatogr. 1989; 476: 135–145.
- 26Pfleiderer B, Albert K, Lork KD, Unger KK, Brückner H, Bayer E. Correlation of the dynamic behavior of n-alkyl ligands of the stationary phase with the retention times of paracelsin peptides in reversed phase HPLC. Angew. Chem. Int. Ed. 1989; 28: 327–329.
- 27Degenkolb T, Nielsen KF, Dieckmann R, Branco-Rocha F, Chaverri P, Samuels GJ, Thrane U, von Döhren H, Vilcinskas A, Brückner H. Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex. Chem. Biodivers. 2015; 12: 662–684.
- 28Lorito M, Farkas V, Rebuffat S, Bodo B, Kubicek CP. Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. J. Bacteriol. 1996; 178: 6382–6385.
- 29von Döhren H, Keller U, Vater J, Zocher R. Multifunctional peptide synthetases. Chem. Rev. 1997; 97: 2675–2705.
- 30Rademann J, Jung G. Integrating combinatorial synthesis and bioassays. Science 2000; 287: 1947–1948.
- 31Ruiz N, Wielgosz-Collin G, Poirier L, Grovel O, Petit KE, Mohamed-Benkada M, Robiou du Pont T, Bissett J, Vérité P, Barnathan G, Pouchus YF. New trichobrachins, 11-residue peptaibols from a marine strain of Trichoderma longibrachiatum. Peptides 2007; 28: 1351–1358.
- 32Carroux A, Van Bohemen AI, Roullier C, Robiou du Pont T, Vansteelandt M, Bondon A, Zalouk-Vergnoux A, Pouchus YF, Ruiz N. Unprecedented 17-residue peptaibiotics produced by marine-derived Trichoderma atroviride. Chem. Biodivers. 2013; 10: 772–786.
- 33Marahiel MA. Working outside the protein synthesis rules: insight into non-ribosomal peptide synthesis. J. Pept. Sci. 2009; 12: 799–807.
- 34Reiber K, Neuhof T, Ozegowski JH, von Döhren H, Schwecke T. A nonribosomal peptide synthetase involved in the biosynthesis of ampullosporins in Sepedonium ampullosporum. J. Pept. Sci. 2003; 9: 701–713.
- 35Bushley KE, Turgeon BD. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol. Biol. 2010; 10: 26.
- 36Degenkolb T, Karimi Aghcheh R, Dieckmann R, Neuhof T, Baker SE, Druzhinina IS, Kubicek CP, Brückner H, von Döhren H. The production of multiple small peptaibol families by single 14-module peptide synthetases in Trichoderma/Hypocrea. Chem. Biodivers. 2012; 9: 499–535.