AbDesign: An algorithm for combinatorial backbone design guided by natural conformations and sequences
Gideon D. Lapidoth
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDror Baran
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorGabriele M. Pszolla
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorChristoffer Norn
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorAssaf Alon
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorMichael D. Tyka
Google Inc., 1600 Amphitheatre Pkwy, Mountain View, California, 94043
Search for more papers by this authorCorresponding Author
Sarel J. Fleishman
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Correspondence to: Sarel Fleishman, Department of Biological Chemistry Ullman Building Room 301c Weizmann Institute of Science Rehovot 76100, Israel. E-mail: [email protected]Search for more papers by this authorGideon D. Lapidoth
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDror Baran
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorGabriele M. Pszolla
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorChristoffer Norn
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorAssaf Alon
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorMichael D. Tyka
Google Inc., 1600 Amphitheatre Pkwy, Mountain View, California, 94043
Search for more papers by this authorCorresponding Author
Sarel J. Fleishman
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Correspondence to: Sarel Fleishman, Department of Biological Chemistry Ullman Building Room 301c Weizmann Institute of Science Rehovot 76100, Israel. E-mail: [email protected]Search for more papers by this authorABSTRACT
Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function—essential to exert control over all polypeptide degrees of freedom—remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in five cases interface sequence identity is above 30%, and in four of those the backbone conformation at the core of the antibody binding surface is within 1 Å root-mean square deviation from the natural antibodies. Designs recapitulate polar interaction networks observed in natural complexes, and amino acid sidechain rigidity at the designed binding surface, which is likely important for affinity and specificity, is high compared to previous design studies. In designed anti-lysozyme antibodies, complementarity-determining regions (CDRs) at the periphery of the interface, such as L1 and H2, show greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, potentially enhancing affinity and specificity. Proteins 2015; 83:1385–1406. © 2015 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
prot24779-sup-0001-suppinfo.gz4.7 MB |
Supporting Information |
prot24779-sup-0002-suppinfo.doc600.5 KB |
Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Huang PS, Love JJ, Mayo SL. A de novo designed protein protein interface. Protein Sci 2007; 16: 2770–2774.
- 2 Jha RK, Leaver-Fay A, Yin S, Wu Y, Butterfoss GL, Szyperski T, V Dokholyan N, Kuhlman B. Computational design of a PAK1 binding protein. J Mol Biol 2010; 400: 257–270.
- 3 Karanicolas J, Corn JE, Chen I, Joachimiak LA, Dym O, Peck SH, Albeck S, Unger T, Hu W, Liu G, Delbecq S, Montelione GT, Spiegel CP, Liu DR, Baker D. A de novo protein binding pair by computational design and directed evolution. Mol Cell 2011; 42: 250–260.
- 4 Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, Strauch EM, Wilson IA, and Baker D. Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 2011; 332: 816–821.
- 5 Strauch EM, Fleishman SJ, Baker D. Computational design of a pH-sensitive IgG binding protein. Proc Natl Acad Sci USA 2014; 111: 675–680.
- 6 Procko E, Hedman R, Hamilton K, Seetharaman J, Fleishman SJ, Su M, Aramini J, Kornhaber G, Hunt JF, Tong L, Montelione GT, Baker D. Computational design of a protein-based enzyme inhibitor. J Mol Biol 2013; 425: 3563–3575.
- 7 Fleishman SJ, Corn JE, Strauch E-M, a Whitehead T, Karanicolas J, Baker D. Hotspot-centric de novo design of protein binders. J Mol Biol 2011; 413: 1047–1062.
- 8 King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, André I, Gonen T, Yeates TO, Baker D. Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 2012; 336: 1171–1174.
- 9 Gradišar H, Božic S, Doles T, Vengust D, Hafner-Bratkovic I, Mertelj A, Webb B, Šali A, Klavžar S, Jerala R. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nat Chem Biol 2013; 9: 362–366.
- 10 Fletcher JM, Harniman RL, Barnes FRH, Boyle AL, Collins A, Mantell J, Sharp TH, Antognozzi M, Booth PJ, Linden N, Miles MJ, Sessions RB, Verkade P, Woolfson DN. Self-assembling cages from coiled-coil peptide modules. Science 2013; 340: 595–599.
- 11 Stranges PB, Machius M, Miley MJ, Tripathy A, Kuhlman B. Computational design of a symmetric homodimer using β-strand assembly. Proc Natl Acad Sci USA 2011; 108: 20562–20567.
- 12 Der BS, Machius M, Miley MJ, Mills JL, Szyperski T, Kuhlman B. Metal-mediated affinity and orientation specificity in a computationally designed protein homodimer. J Am Chem Soc 2012; 134: 375–385.
- 13 Lo Conte L, Chothia C, Janin J. The atomic structure of protein–protein recognition sites. J Mol Biol 1999; 285: 2177–2198.
- 14 Fleishman SJ, Whitehead TA, Strauch E-M, Corn JE, Qin S, Zhou H-X, Mitchell JC, a Demerdash ON, Takeda-Shitaka M, Terashi G, Moal IH, Li X, a Bates P, Zacharias M, Park H, Ko J, Lee H, Seok C, Bourquard T, Bernauer J, Poupon A, Azé J, Soner S, Ovali SK, Ozbek P, Ben Tal N, Haliloglu T, Hwang H, Vreven T, Pierce BG, Weng Z, Pérez-Cano L, Pons C, Fernández-Recio J, Jiang F, Yang F, Gong X, Cao L, Xu X, Liu B, Wang P, Li C, Wang C, Robert CH, Guharoy M, Liu S, Huang Y, Li L, Guo D, Chen Y, Xiao Y, London N, Itzhaki Z, Schueler-Furman O, Inbar Y, Potapov V, Cohen M, Schreiber G, Tsuchiya Y, Kanamori E, Standley DM, Nakamura H, Kinoshita K, Driggers CM, Hall RG, Morgan JL, Hsu VL, Zhan J, Yang Y, Zhou Y, Kastritis PL, Bonvin AMJJ, Zhang W, Camacho CJ, Kilambi KP, Sircar A, Gray JJ, Ohue M, Uchikoga N, Matsuzaki Y, Ishida T, Akiyama Y, Khashan R, Bush S, Fouches D, Tropsha A, Esquivel-Rodríguez J, Kihara D, Stranges PB, Jacak R, Kuhlman B, Huang S-Y, Zou X, Wodak SJ, Janin J, Baker D. Community-wide assessment of protein-interface modeling suggests improvements to design methodology. J Mol Biol 2011; 414: 289–302.
- 15 Moretti R, Fleishman SJ, Agius R, Torchala M, a Bates P, Kastritis PL, Rodrigues JPGLM, Trellet M, Bonvin AMJJ, Cui M, Rooman M, Gillis D, Dehouck Y, Moal I, Romero-Durana M, Perez-Cano L, Pallara C, Jimenez B, Fernandez-Recio J, Flores S, Pacella M, Praneeth Kilambi K, Gray JJ, Popov P, Grudinin S, Esquivel-Rodríguez J, Kihara D, Zhao N, Korkin D, Zhu X, a Demerdash ON, Mitchell JC, Kanamori E, Tsuchiya Y, Nakamura H, Lee H, Park H, Seok C, Sarmiento J, Liang S, Teraguchi S, Standley DM, Shimoyama H, Terashi G, Takeda-Shitaka M, Iwadate M, Umeyama H, Beglov D, Hall DR, Kozakov D, Vajda S, Pierce BG, Hwang H, Vreven T, Weng Z, Huang Y, Li H, Yang X, Ji X, Liu S, Xiao Y, Zacharias M, Qin S, Zhou H-X, Huang S-Y, Zou X, Velankar S, Janin J, Wodak SJ, Baker D. Community-wide evaluation of methods for predicting the effect of mutations on protein–protein interactions. Proteins 2013; 81: 1980–1987.
- 16 Stranges PB, Kuhlman B. A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds. Protein Sci 2013; 22: 74–82.
- 17 Khare SD, Fleishman SJ. Emerging themes in the computational design of novel enzymes and protein–protein interfaces. FEBS Lett 2013; 587: 1147–1154.
- 18 Fleishman SJ, Baker D. Role of the biomolecular energy gap in protein design, structure, and evolution. Cell 2012; 149: 262–273.
- 19 Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. Design of a novel globular protein fold with atomic-level accuracy. Science 2003; 302: 1364–1368.
- 20 Zanghellini A, Jiang L, Wollacott AM, Cheng G, Meiler J, Althoff EA, Röthlisberger D, Baker D. New algorithms and an in silico benchmark for computational enzyme design. Protein Sci 2006; 15: 2785–2794.
- 21 Wu, T, Te Kabat, E. An analysis of the sequences of the variable regions of bence jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 1970; 132: 211–250.
- 22 Chothia C, Lesk AM. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 1987; 196: 901–917.
- 23 Strausbauch PH, Weinstein Y, Wilchek M, Shaltiel S, Givol D. A homologous series of affinity labeling reagents and their use in the study of antibody binding sites. Biochemistry 1971; 10: 4342–4348.
- 24 North B, Lehmann A, Dunbrack RL. A new clustering of antibody CDR loop conformations. J Mol Biol 2011; 406: 228–256.
- 25 Al-Lazikani B, Lesk AM, Chothia C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 1997; 273: 927–948.
- 26 Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C. Sequences of proteins of immunological interest, 5th ed. Bethesda, Maryland: National Institutes of Health; 1991.
- 27 Kabat EA, Wu TT, Bilofsky H. Unusual distributions of amino acids in complementarity-determining (hypervariable) segments of heavy and light chains of immunoglobulins and their possible roles in specificity of antibody-combining sites. J Biol Chem 1977; 252: 6609–6616.
- 28 Dellus-Gur E, Toth-Petroczy A, Elias M, Tawfik DS. What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs. J Mol Biol 2013; 425: 2609–2621.
- 29 Lesk A, Chothia C. Evolution of proteins formed by β-sheets: II. The core of the immunoglobulin domains. J Mol Biol 1982; 160: 325–342.
- 30 Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature 1988; 332: 323–327.
- 31 Jones P, Dear P, Foote J, Neuberger M, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321: 522–525.
- 32 Winter G, Milstein C. Man-made antibodies. Nature 1991; 349: 293–299.
- 33 Michnick SW, Sidhu SS. Submitting antibodies to binding arbitration. Nat Chem Biol 2008; 4: 326–329.
- 34 Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 2010; 10: 345–352.
- 35 Filpula D. Antibody engineering and modification technologies. Biomol Eng 2007; 24: 201–215.
- 36 Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer 2012; 12: 278–287.
- 37 Ekiert DC, Wilson IA. Broadly neutralizing antibodies against influenza virus and prospects for universal therapies. Curr Opin Virol 2012; 2: 134–141.
- 38 Glennie MJ, Johnson PW. Clinical trials of antibody therapy. Immunol Today 2000; 21: 403–410.
- 39 O'Nuallain B, Wetzel R. Conformational abs recognizing a generic amyloid fibril epitope. Proc Natl Acad Sci USA 2002; 99: 1485–1490.
- 40 Perchiacca JM, Ladiwala ARA, Bhattacharya M, Tessier PM. Structure-based design of conformation- and sequence-specific antibodies against amyloid β. Proc Natl Acad Sci USA 2012; 109: 84–89.
- 41 Schwarz M, Röttgen P, Takada Y, Le Gall F, Knackmuss S, Bassler N, Büttner C, Little M, Bode C, Peter K. Single-chain antibodies for the conformation-specific blockade of activated platelet integrin alphaIIbbeta3 designed by subtractive selection from naive human phage libraries. FASEB J 2004; 18: 1704–1706.
- 42 Ofek G, Guenaga FJ, Schief WR, Skinner J, Baker D, Wyatt R, Kwong PD. Elicitation of structure-specific antibodies by epitope scaffolds. Proc Natl Acad Sci USA 2010; 107: 17880–17887.
- 43 McLellan JS, Chen M, Leung S, Graepel KW, Du X, Yang Y, Zhou T, Baxa U, Yasuda E, Beaumont T, Kumar A, Modjarrad K, Zheng Z, Zhao M, Xia N, Kwong PD, Graham BS. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 2013; 340: 1113–1117.
- 44 Throsby M, van den Brink E, Jongeneelen M, Poon LLM, Alard P, Cornelissen L, Bakker A, Cox F, van Deventer E, Guan Y, Cinatl J, ter Meulen J, Lasters I, Carsetti R, Peiris M, de Kruif J, Goudsmit J. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One 2008; 3: e3942.
- 45 Fleishman SJ, Leaver-Fay A, Corn JE, Strauch E-M, Khare SD, Koga N, Ashworth J, Murphy P, Richter F, Lemmon G, Meiler J, Baker D. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 2006; 15: 949–960.
- 46 Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 2007; 25: 1171–1176.
- 47 Clark L, Boriack-Sjodin PA, Day E, Eldredge J, Fitch C, Jarpe M, Miller S, Li Y, Simon K, van Vlijmen HWT. An antibody loop replacement design feasibility study and a loop-swapped dimer structure. Protein Eng Des Sel 2009; 22: 93–101.
- 48 Barderas R, Desmet J, Timmerman P, Meloen R, Casal JI. Affinity maturation of antibodies assisted by in silico modeling. Proc Natl Acad Sci USA 2008; 105: 9029–9034.
- 49 Farady CJ, Sellers BD, Jacobson MP, Craik CS. Improving the species cross-reactivity of an antibody using computational design. Bioorg Med Chem Lett 2009; 19: 3744–3747.
- 50 Miklos AE, Kluwe C, Der BS, Pai S, Sircar A, a Hughes R, Berrondo M, Xu J, Codrea V, Buckley PE, Calm AM, Welsh HS, Warner CR, a Zacharko M, Carney JP, Gray JJ, Georgiou G, Kuhlman B, Ellington AD. Structure-based design of supercharged, highly thermoresistant antibodies. Chem Biol 2012; 19: 449–455.
- 51 Pantazes RJ, Maranas CD. OptCDR: a general computational method for the design of antibody complementarity determining regions for targeted epitope binding. Protein Eng Des Sel 2010; 23: 849–858.
- 52 Pantazes RJ, Maranas CD. MAPs: a database of modular antibody parts for predicting tertiary structures and designing affinity matured antibodies. BMC Bioinform 2013; 14: 168.
- 53 Li T, Pantazes RJ, Maranas CD. OptMAVEn—a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes. PLoS One 2014; 9: e105954.
- 54 Das R, Baker D. Macromolecular modeling with Rosetta. Annu Rev Biochem 2008; 77: 363–382.
- 55 Fleishman SJ, Leaver-Fay A, Corn JE, Strauch E-M, Khare SD, Koga N, Ashworth J, Murphy P, Richter F, Lemmon G, Meiler J, Baker D. RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS One 2011; 6: e20161.
- 56 Whitehead TA, Baker D, Fleishman SJ. Computational design of novel protein binders and experimental affinity maturation. Methods Enzymol 2013; 523: 1–19.
- 57 Méndez R, Leplae R, De Maria L, Wodak SJ. Assessment of blind predictions of protein–protein interactions: current status of docking methods. Proteins 2003; 52: 51–67.
- 58 Lawrence MC, Colman PM. Shape complementarity at protein/protein interfaces. J Mol Biol 1993; 234: 946–950.
- 59 Sheffler W, Baker D. RosettaHoles: rapid assessment of protein core packing for structure prediction, refinement, design, and validation. Protein Sci 2009; 18: 229–239.
- 60 DeLano WL. The PyMOL Molecular Graphics System. Palo Alto, CA: DeLano Scientific LLC; 2008.
- 61 Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, Baker D. Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 2003; 331: 281–299.
- 62 Fleishman SJ, Khare SD, Koga N, Baker D. Restricted sidechain plasticity in the structures of native proteins and complexes. Protein Sci 2011; 20: 753–757.
- 63 Kortemme T, Baker D. A simple physical model for binding energy hot spots in protein–protein complexes. Proc Natl Acad Sci USA 2002; 99: 14116–14121.
- 64 Shirai H, Kidera A, Nakamura H. H3-rules: identification of CDR-H3 structures in antibodies. FEBS Lett 1999; 455: 188–197.
- 65 Chothia C, Lesk A, Tramontano A. Conformations of immunoglobulin hypervariable regions. Nature 1989.
- 66 Alexander N, Woetzel N, Meiler J. Bcl:: Cluster: a method for clustering biological molecules coupled with visualization in the Pymol Molecular Graphics System. Comput Adv Biol Med Sci (ICCABS), 2011 IEEE 1st Int. Conf. 2011; 13–18.
- 67 Biegert A, Söding J. Sequence context-specific profiles for homology searching. Proc Natl Acad Sci USA 2009; 106: 3770–3775.
- 68 Bernstein FC, Koetzle TF, Williams GJ, Meyer EE, Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi MT. The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 1977; 112: 535.
- 69 Warszawski S, Netzer R, Tawfik DS, Fleishman SJ. A “fuzzy”-logic language for encoding multiple physical traits in biomolecules. J Mol Biol 2014; 426: 4125–4138.
- 70 Berezovsky IN, Zeldovich KB, Shakhnovich EI. Positive and negative design in stability and thermal adaptation of natural proteins. PLoS Comput Biol 2007; 3: e52.
- 71 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinform 2009; 10: 421.
- 72 Mandell D, Coutsias E, Kortemme T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 2009; 6: 551–552.
- 73 Smith CA, Kortemme T. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J Mol Biol 2008; 380: 742–756.
- 74 Canutescu AA, Jr, Dunbrack RL. Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci 2003; 12: 963–972.
- 75 Tyka MD, Keedy DA, André I, DiMaio F, Song Y, Richardson DC, Richardson JS, Baker D. Alternate states of proteins revealed by detailed energy landscape mapping. J Mol Biol 2011; 405: 607–618.
- 76 Hu X, Wang H, Ke H, Kuhlman B. High-resolution design of a protein loop. Proc Natl Acad Sci USA 2007; 104: 17668–17673.
- 77 Richter F, Blomberg R, Khare SD, Kiss G, Kuzin AP, Smith AJT, Gallaher J, Pianowski Z, Helgeson RC, Grjasnow A, Xiao R, Seetharaman J, Su M, Vorobiev S, Lew S, Forouhar F, Kornhaber GJ, Hunt JF, Montelione GT, Tong L, Houk KN, Hilvert D, Baker D. Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. J Am Chem Soc 2012; 134: 16197–16206.
- 78 Midelfort KS, Hernandez HH, Lippow SM, Tidor B, Drennan CL, Wittrup KD. Substantial energetic improvement with minimal structural perturbation in a high affinity mutant antibody. J Mol Biol 2004; 343: 685–701.
- 79 Dunbar J, Krawczyk K, Leem J, Baker T, Fuchs A, Georges G, Shi J, Deane CM. SAbDab: the structural antibody database. Nucleic Acids Res 2014; 42: D1140–D1146.
- 80 Padlan EA. Structural basis for the specificity of antibody–antigen reactions and structural mechanisms for the diversification of antigen-binding specificities. Q Rev Biophys 1977; 10: 35–65.
- 81 Singer I, et al. Optimal humanization of 1B4, an anti-CD18 murine monoclonal antibody, is achieved by correct choice of human V-region framework sequences. J Immunol 1993; 150: 2844–2857.
- 82 Padlan E. A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol Immunol 1991; 28: 489–498.
- 83 Tramontano A, Chothia C, Lesk AM. Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. J Mol Biol 1990; 215: 175–182.
- 84 Foote J, Winter G. Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol 1992; 224: 487–499.
- 85 Shirai H, Kidera A, Nakamura H. Structural classification of CDR-H3 in antibodies. FEBS Lett 1996; 399: 1–8.
- 86 Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, Gray JJ. Benchmarking and analysis of protein docking performance in rosetta v3.2. PLoS One 2011; 6: e22477.
- 87 Allison B, et al. Computational design of protein-small molecule interfaces. J Struct Biol 2014; 185: 193–202.
- 88 Burton DR, Poignard P, Stanfield RL, Wilson IA. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 2012; 337: 183–186.
- 89 Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005; 33: W363–W367.
- 90 Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, St Clair JL, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-alder reaction. Science 2010; 329: 309–313.
- 91 Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D. Computational design of ligand-binding proteins with high affinity and selectivity. Nature 2013; 501: 212–216.
- 92 Ganesan R, Eigenbrot C, Wu Y, Liang W-C, Shia S, Lipari MT, Kirchhofer D. Unraveling the allosteric mechanism of serine protease inhibition by an antibody. Structure 2009; 17: 1614–1624.
- 93 Luftig MA, Mattu M, Di Giovine P, Geleziunas R, Hrin R, Barbato G, Bianchi E, Miller MD, Pessi A, Carfi A. Structural basis for HIV-1 neutralization by a gp41 fusion intermediate-directed antibody. Nat Struct Mol Biol 2006; 13: 740–747.
- 94 Spiegel PC. Structure of a factor VIII C2 domain-immunoglobulin G4kappa fab complex: identification of an inhibitory antibody epitope on the surface of factor VIII. Blood 2001; 98: 13–19.
- 95 Mylvaganam SE, Paterson Y, Getzoff ED. Structural basis for the binding of an anti-cytochrome c antibody to its antigen: crystal structures of FabE8-cytochrome c complex to 1.8 a resolution and FabE8 to 2.26 a resolution. J Mol Biol 1998; 281: 301–322.
- 96 Bhat TN, Bentley GA, Boulot G, Greene MI, Tello D, Dall'Acqua W, Souchon H, Schwarz FP, Mariuzza RA, Poljak RJ. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci USA 1994; 91: 1089–1093.
- 97 Cauerhff A, Goldbaum FA, Braden BC. Structural mechanism for affinity maturation of an anti-lysozyme antibody. Proc Natl Acad Sci USA 2004; 101: 3539–3544.
- 98 Prasad L, Waygood EB, Lee JS, Delbaere LT. The 2.5 a resolution structure of the jel42 fab fragment/HPr complex. J Mol Biol 1998; 280: 829–845.
- 99 Maun HR, Wen X, Lingel A, de Sauvage FJ, a Lazarus R, Scales SJ, Hymowitz SG. Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. J Biol Chem 2010; 285: 26570–26580.
- 100 Faelber K, Kirchhofer D, Presta L, Kelley RF, Muller YA. The 1.85 a resolution crystal structures of tissue factor in complex with humanized fab D3h44 and of free humanized fab D3h44: revisiting the solvation of antigen combining sites. J Mol Biol 2001; 313: 83–97.
- 101 Kuhlman B, Baker D. Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci USA 2000; 97: 10383–10388.
- 102 Dunbrack RL, Karplus M. Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains. Nat Struct Mol Biol 1994; 1: 334–340.
- 103 Yin J, et al. A comparative analysis of the immunological evolution of antibody 28B4. Biochemistry 2001; 40: 10764–10773.
- 104 Sagawa T, Oda M, Ishimura M, Furukawa K, Azuma T. Thermodynamic and kinetic aspects of antibody evolution during the immune response to hapten. Mol Immunol 2003; 39: 801–808.
- 105 Manivel V, Sahoo NC, Salunke DM, Rao KV. Maturation of an antibody response is governed by modulations in flexibility of the antigen-combining site. Immunity 2000; 13: 611–620.
- 106 Yin J, Beuscher AE, Andryski SE, Stevens RC, Schultz PG. Structural plasticity and the evolution of antibody affinity and specificity. J Mol Biol 2003; 330: 651–656.
- 107 Procko E, Berguig GY, Shen BW, Song Y, Frayo S, Convertine AJ, Margineantu D, Booth G, Correia BE, Cheng Y, Schief WR, Hockenbery DM, Press OW, Stoddard BL, Stayton PS, Baker D. A computationally designed inhibitor of an Epstein–Barr viral Bcl-2 protein induces apoptosis in infected cells. Cell 2014; 157: 1644–1656.
- 108 Mandell DJ, Kortemme T. Computer-aided design of functional protein interactions. Nat Chem Biol 2009; 5: 797–807.
- 109 Kettleborough CA, Saldanha J, Heath VJ, Morrison CJ, Bendig MM. Humanization of a mouse monoclonal antibody by CDR-grafting: The importance of framework residues on loop conformation. Protein Eng 1991; 4: 773–783.
- 110 Pons J, Stratton JR, Kirsch JF. How do two unrelated antibodies, HyHEL-10 and F9.13.7, recognize the same epitope of hen egg-white lysozyme? Protein Sci 2002; 11: 2308–2315.
- 111 Chen J, Sawyer N, Regan L. Protein–protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area. Protein Sci 2013; 22: 510–515.
- 112 Leaver-Fay A, O'Meara MJ, Tyka M, Jacak R, Song Y, Kellogg EH, Thompson J, Davis IW, a Pache R, Lyskov S, Gray JJ, Kortemme T, Richardson JS, Havranek JJ, Snoeyink J, Baker D, Kuhlman B. Scientific benchmarks for guiding macromolecular energy function improvement. Vol. 523; 2013. pp. 109–143.
- 113 Song Y, Tyka M, Leaver-Fay A, Thompson J, Baker D. Structure-guided forcefield optimization. Proteins 2011; 79: 1898–1909.