Mechanism of reactant and product dissociation from the anthrax edema factor: A locally enhanced sampling and steered molecular dynamics study
Corresponding Author
Leandro Martínez
Unité de Bioinformatique Structurale, URA CNRS 2185, Institut Pasteur, 25, rue du Dr Roux, F-75015 Paris, France
Instituto de Física de São Carlos, Universidade de São Paulo. Av. Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brasil===Search for more papers by this authorThérèse E. Malliavin
Unité de Bioinformatique Structurale, URA CNRS 2185, Institut Pasteur, 25, rue du Dr Roux, F-75015 Paris, France
Search for more papers by this authorArnaud Blondel
Unité de Bioinformatique Structurale, URA CNRS 2185, Institut Pasteur, 25, rue du Dr Roux, F-75015 Paris, France
Search for more papers by this authorCorresponding Author
Leandro Martínez
Unité de Bioinformatique Structurale, URA CNRS 2185, Institut Pasteur, 25, rue du Dr Roux, F-75015 Paris, France
Instituto de Física de São Carlos, Universidade de São Paulo. Av. Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brasil===Search for more papers by this authorThérèse E. Malliavin
Unité de Bioinformatique Structurale, URA CNRS 2185, Institut Pasteur, 25, rue du Dr Roux, F-75015 Paris, France
Search for more papers by this authorArnaud Blondel
Unité de Bioinformatique Structurale, URA CNRS 2185, Institut Pasteur, 25, rue du Dr Roux, F-75015 Paris, France
Search for more papers by this authorAbstract
The anthrax edema factor is a toxin overproducing damaging levels of cyclic adenosine mono-phosphate (cAMP) and pyrophosphate (PPi) from ATP. Here, mechanisms of dissociation of ATP and products (cAMP, PPi) from the active site are studied using locally enhanced sampling (LES) and steered molecular dynamics simulations. Various substrate conformations and ionic binding modes found in crystallographic structures are considered. LES simulations show that PPi and cAMP dissociate through different solvent accessible channels, while ATP dissociation requires significant active site exposure to solvent. The ionic content of the active site directly affects the dissociation of ATP and products. Only one ion dissociates along with ATP in the two-Mg2+ binding site, suggesting that the other ion binds EF prior to ATP association. Dissociation of reaction products cAMP and PPi is impaired by direct electrostatic interactions between products and Mg2+ ions. This provides an explanation for the inhibitory effect of high Mg2+ concentrations on EF enzymatic activity. Breaking of electrostatic interactions is dependent on a competitive binding of water molecules to the ions, and thus on the solvent accessibility of the active site. Consequently, product dissociation seems to be a two-step process. First, ligands are progressively solvated while preserving the most important electrostatic interactions, in a process that is dependent on the flexibility of the active site. Second, breakage of the electrostatic bonds follows, and ligands diffuse into solvent. In agreement with this mecanism, product protonation facilitates dissociation. Proteins 2011; © 2011 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22991_sm_suppinfo.pdf350.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Drum CL,Yan SZ,Bard J,Shen Y,Lu D,Soelaiman S,Grabarek Z,Bohm A,Tang WJ. Structural basis for the activation of anthrax adenyl cyclase exotoxin by calmodulin. Nature 2002; 415: 396–402.
- 2 Ulmer TS,Soelaiman S,Li S,Klee CB,Tang WJ,Bax A. Calcium dependence of the interaction between calmodulin and anthrax edema factor. J Biol Chem 2003; 278: 29261–29266.
- 3 Laine E,Yoneda JD,Blondel A,Malliavin TE. The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis. Proteins 2008; 71: 1813–1829.
- 4 Laine E,Martínez L,Blondel A,Malliavin TE. Activation of the edema factor of Bacillus anthracis by calmodulin: Evidence of an interplay between the EF-calmodulin interaction and calcium binding. Biophys J 2010; 99: 2264–2272.
- 5 Steitz TA,Smerdon SJ,Jager J,Joyce CM. A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science 1994; 266: 2202–2025.
- 6 Tesmer JJ,Sunahara RK,Johnson RA,Gosselin G,Gilman AG,Sprang SR. Two-metal-ion catalysis in adenylyl cyclase. Science 1999; 285: 756–760.
- 7 Shen Y,Lee YS,Soelaiman S,Bergson P,Lu D,Chen A,Beckingham K,Grabarek Z,Mrksich M,Tang WJ. Physiological calcium concentrations regulate calmodulin binding and catalysis of adenyl cyclase exotoxins. EMBO J 2002; 21: 6721–6732.
- 8 Arndt JW,Zhong WGX,Showalter AK,Liu J,Dunlap CA,Lin Z,Paxson C,Tsai MD,Chan MK. Insight into the Catalytic Mechanism of DNA Polymerase β : Structures of Intermediate Complexes. Biochemistry 2001; 40: 5368–5375.
- 9 Shen Y,Zhukovskaya NL,Guo Q,Florian J,Tang WJ. Calcium-independent calmodulin binding and two-metal-ion catalytic mechanism of anthrax edema factor. EMBO J 2005; 24: 929–941.
- 10 Guo Q,Shen Y,Zhukovskaya NL,Florian J,Tang WJ. Structural and Kinetic Analyses of the Interaction of Anthrax Adenyl Cyclase Toxin with Reaction Products cAMP and Pyrophosphate. J Biol Chem 2004; 279: 29427–29435.
- 11 Gupta M,Alam S,Bhatnagar R. Kinetic characterization and ligand binding studies of His351 mutants of Bacillus anthracis adenylate cyclase. Archiv Biochem Biophys 2006; 446: 28–34.
- 12 Brautigam CA,Ascheim K,Steitz TA. Structural elucidation of the binding and inhibitory properties of lanthanide (III) ions at the 3′-5′ exonucleolytic active site of the Klenow fragment. Chem Biol 1999; 6: 901–908.
- 13 Nelson DL,Cox MM. Lehninger Principles of Biochemistry. New York: W.H.Freeman; 2008.
- 14 Martínez L,Laine E,Malliavin T,Nilges M,Blondel A. ATP conformations and ion binding modes in the active site of anthrax edema factor: A computational analysis. Proteins 2009; 77: 971–983.
- 15 MacKerell AD,Bashford D,Bellott M,Dunbrack RL,Evanseck JD,Field MJ,Fischer S,Gao J,Guo H,Ha S,Joseph-McCarthy D,Kuchnir L,Kuczera K,Lau FTK,Mattos C,Michnick S,Ngo T,Nguyen DT,Prodhom B,Reiher WE,Roux B,Schlenkrich M,Smith JC,Stote R,Straub J,Watanabe M,Wiorkiewicz-Kuczera J,Yin D,Karplus M. All-atom empirical potential for molecular modeling and dynamics Studies of proteins. J Phys Chem B 1998; 102: 3586–3616.
- 16 Pavelites JJ,Bash PA,Gao J,MacKerell AD. A Molecular Mechanics Force Field for NAD+, NADH and the Pyrophosphate Groups of Nucleotides. J Comput Chem 1997; 18: 221–239.
- 17 Frisch MJ,Trucks GW,Schlegel HB,Scuseria GE,Robb MA,Cheeseman JR,Montgomery JA,Jr,Vreven T,Kudin KN,Burant JC,Millam JM,Iyengar SS,Tomasi J,Barone V,Mennucci B,Cossi M,Scalmani G,Rega N,Petersson GA,Nakatsuji H,Hada M,Ehara M,Toyota K,Fukuda R,Hasegawa J,Ishida M,Nakajima T,Honda Y,Kitao O,Nakai H,Klene M,Li X,Knox JE,Hratchian HP,Cross JB,Bakken V,Adamo C,Jaramillo J,Gomperts R,Stratmann RE,Yazyev O,Austin AJ,Cammi R,Pomelli C,Ochterski JW,Ayala PY,Morokuma K,Voth GA,Salvador P,Dannenberg JJ,Zakrzewski VG,Dapprich S,Daniels AD,Strain MC,Farkas O,Malick DK,Rabuck AD,Raghavachari K,Foresman JB,Ortiz JV,Cui Q,Baboul AG,Clifford S,Cioslowski J,Stefanov BB,Liu G,Liashenko A,Piskorz P,Komaromi I,Martin RL,Fox DJ,Keith T,Al-Laham MA,Peng CY,Nanayakkara A,Challacombe M,Gill PMW,Johnson B,Chen W,Wong MW,Gonzalez C,Pople JA. Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, CT, 2004.
- 18 Jorgensen WL,Chandrasekhar J,Madura JD,Impey RW,Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79: 926–935.
- 19 Martínez JM,Martínez L. Packing optimization for automated generation of complex system's initial configurations for molecular dynamics and docking. J Comput Chem 2003; 24: 819–825.
- 20 Martínez L,Andrade RA,Birgin EG,Martínez JM. Packmol: A package for building initial configurations for molecular dynamics simulations. J Comput Chem 2009; 30: 2157–2164.
- 21 Humphrey W,Dalke A,Schulten K. VMD - Visual Molecular Dynamics. J Mol Graphics 1996; 14: 33–38.
- 22 DeLano WL. The PyMOL Molecular Graphics System. California: DeLano Scientific; http://www.pymol.org; 2002.
- 23 Phillips JC,Braun R,Wang W,Gumbart J,Tajkhorshid E.,Villa E,Chipot C,Skeel RD,Kale L,Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26: 1781–1802.
- 24 Andersen HC. RATTLE - A velocity version of the SHAKE algorithm for molecular dynamics calculations. J Comput Phys 1983; 52: 24–34.
- 25 Chirsten M,van Gunsteren WF. On searching in, sampling of, and dynamically moving through coformational space of biomolecular sytems: A review. J Comput Chem 2008; 29: 157–166.
- 26 Schlitter J,Engels M,Kruger P. Targeted Molecular Dynamics - A new approach for searching pathways of conformational transitions. J Mol Graphics 1994; 12: 84–89.
- 27 Elber R,Karplus M. Enhanced sampling in molecular dynamics: Use of the Time-Dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J Am Chem Soc 1990; 112: 9161–9175.
- 28 Gibson QH,Regan R,Elber R,Olson JS,Carver TE. Distal pocket residues affect picosecond ligand recombination in myoglobin: An experimental and molecular dynamics study of position 29 mutants. J Biol Chem 1992; 267: 22022–22034.
- 29 Scott EE,Gibson QH,Olson JS. Mapping the pathways for O2 entry into and exit from myoglobin. J Biol Chem 2001; 267: 5177–5188.
- 30 Brunori M,Gibson QH. Cavities and packing defects in the structural dynamics of myoglobin. EMBO Rep 2001; 2: 674–679.
- 31 Blondel A,Renaud JP,Fischer S,Moras D,Karplus M. Retinoic acid receptor: a simulation analysis of retinoic acid binding and the resulting conformational changes. J Mol Biol 1999; 291: 101–115.
- 32 Martínez L,Sonoda MT,Webb P,Baxter JD,Skaf MS,Polikarpov I. Molecular dynamics simulations reveal multiple pathways of ligand dissociation from thyroid hormone receptors. Biophys J 2005; 89: 2011–2023.
- 33 Ulitsky A,Elber R. The thermal equilibrium aspects of the time dependent Hartree and the locally enhanced sampling approximations: formal properties, a correction, and computational examples for rare gas clusters. J Chem Phys 1993; 98: 3380–3388.
- 34 Brooks BR,Bruccoleri RE,Olafson BD,States DJ,Swaminathan S,Karplus M. CHARMM - A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 1983; 4: 187–217.
- 35 Lavery R,Sklenar H,Zakrzewska K,Pullman B. The flexibility of the nucleic acids: (II). The calculation of internal energy and applications to mononucleotide repeat DNA. J Biomol Struct Dyn 1986; 3: 989–1014.
- 36 Kosztin D,Izrailev S,Schulten K. Unbinding of retinoic acid from its receptor studied by steered molecular dynamics. Biophys J 1999; 76: 188–197.
- 37 Isralewitz B,Baudry J,Gullingsrud J,Kosztin D,Schulten K. Steered molecular dynamics investigations of protein function. J Mol Graph Model 2001; 19: 13–25.
- 38 Martínez L,Webb P,Polikarpov I,Skaf MS. Molecular dynamics simulations of ligand dissociation from thyroid hormone receptors: Evidence of the likeliest escape pathway and its implications for the design of novel ligands. J Med Chem 2006; 49: 23–26.
- 39 Castro C,Smidansky E,Maksimchuk KR,Arnold JJ,Korneeva VS,Gotte M,Konigsberg W,Cameron CE. Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases. Proc Natl Acad Sci USA 2007; 104: 4267–4272.
- 40 Liu J,Tsai MD. DNA Polymerase β: Pre-Steady-State Kinetic Analyses of dATPS Stereoselectivity and Alteration of the Stereoselectivity by Various Metal Ions and by Site-Directed Mutagenesis. Biochemistry 2001; 40: 9014–9022.