Structural architecture of Galdieria sulphuraria DCN1L
E. Sethe Burgie
Department of Genetics, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Search for more papers by this authorCraig A. Bingman
Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Search for more papers by this authorShin-ichi Makino
Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Search for more papers by this authorGary E. Wesenberg
Department of Mathematics, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Search for more papers by this authorXiaokang Pan
Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Search for more papers by this authorBrian G. Fox
Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Search for more papers by this authorCorresponding Author
George N. Phillips Jr.
Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544===Search for more papers by this authorE. Sethe Burgie
Department of Genetics, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Search for more papers by this authorCraig A. Bingman
Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Search for more papers by this authorShin-ichi Makino
Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Search for more papers by this authorGary E. Wesenberg
Department of Mathematics, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Search for more papers by this authorXiaokang Pan
Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Search for more papers by this authorBrian G. Fox
Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Search for more papers by this authorCorresponding Author
George N. Phillips Jr.
Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544===Search for more papers by this author
REFERENCES
- 1 Lammer D,Mathias N,Laplaza JM,Jiang WD,Liu Y,Callis J,Goebl M,Estelle M. Modification of yeast Cdc53p by the ubiquitin-related protein Rub1p affects function of the SCFCdc4 complex. Gene Dev 1998; 12: 914–926.
- 2 Merlet J,Burger J,Gomes JE,Pintard L. Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cell Mol Life Sci 2009; 66: 1924–1938.
- 3 Morimoto M,Nishida T,Honda R,Yasuda H. Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCFskp2 toward p27(kip1). Biochem Bioph Res Co 2000; 270: 1093–1096.
- 4 Podust VN,Brownell JE,Gladysheva TB,Luo RS,Wang CH,Coggins MB,Pierce JW,Lightcap ES,Chau V. A Nedd8 conjugation pathway is essential for proteolytic targeting of p27(Kip1) by ubiquitination. Proc Natl Acad Sci USA 2000; 97: 4579–4584.
- 5 Read MA,Brownell JE,Gladysheva TB,Hottelet M,Parent LA,Coggins MB,Pierce JW,Podust VN,Luo RS,Chau V,Palombella VJ. Nedd8 modification of Cul-1 activates SCF beta(TrCp)-dependent ubiquitination of I kappa B alpha. Mol Cell Biol 2000; 20: 2326– 2333.
- 6 Deshaies RJ. SCF and cullin/RING H2-based ubiquitin ligases. Annu Rev Cell Dev Bi 1999; 15: 435–467.
- 7 Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994; 79: 13–21.
- 8 Scott DC,Monda JK,Grace CR,Duda DM,Kriwacki RW,Kurz T,Schulman BA. A dual E3 mechanism for Rub1 ligation to Cdc53. Mol Cell 2010; 39: 784–796.
- 9 Kawakami T,Chiba T,Suzuki T,Iwai K,Yamanaka K,Minato N,Suzuki H,Shimbara N,Hidaka Y,Osaka F,Omata M,Tanaka K. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J 2001; 20: 4003–4012.
- 10 Duda DM,Borg LA,Scott DC,Hunt HW,Hammel M,Schulman BA. Structural insights into NEDD8 activation of Cullin-RING ligases: conformational control of conjugation. Cell 2008; 134: 995–1006.
- 11 Tanaka K,Suzuki T,Chiba T. The ligation systems for ubiquitin and ubiquitin-like proteins. Mol Cells 1998; 8: 503–512.
- 12 Huang DT,Schulman BA. Expression, purification, and characterization of the E1 for human NEDD8, the heterodimeric APPBP1-UBA3 complex. Ubiquitin Protein Degrad A 2005; 398: 9–20.
- 13 Chiba T. In vitro systems for NEDD8 conjugation by Ubc12. Ubiquitin Protein Degrad A 2005; 398: 68–73.
- 14 Meyer-Schaller N,Chou YC,Sumara I,Martin DD,Kurz T,Katheder N,Hofmann K,Berthiaume LG,Sicheri F,Peter M. The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes. Proc Natl Acad Sci USA 2009; 106: 12365–12370.
- 15 Yang XY,Zhou J,Sun L,Wei ZY,Gao JY,Gong WM,Xu RM,Rao ZH,Liu YF. Structural basis for the function of DCN-1 in protein neddylation. J Biol Chem 2007; 282: 24490–24494.
- 16 Kurz T,Chou YC,Willems AR,Meyer-Schaller N,Hecht ML,Tyers M,Peter M,Sicheri F. Dcn1 functions as a scaffold-type E3 ligase for cullin neddylation. Mol Cell 2008; 29: 23–35.
- 17 Barbier G,Oesterhelt C,Larson MD,Halgren RG,Wilkerson C,Garavito RM,Benning C,Weber APM. Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 2005; 137: 460–474.
- 18 Weber APM,Oesterhelt C,Gross W,Brautigam A,Imboden LA,Krassovskaya I,Linka N,Truchina J,Schneidereit J,Voll H,Voll LM,Zimmermann M,Jamai A,Riekhof WR,Yu B,Garavito RM,Benning C. EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Mol Biol 2004; 55: 17–32.
- 19 Blommel PG,Martin PA,Wrobel RL,Steffen E,Fox BG. High efficiency single step production of expression plasmids from cDNA clones using the Flexi Vector cloning system. Protein Expr Purif 2006; 47: 562–570.
- 20 Makino S,Goren MA,Fox BG,Markley JL. Cell-free protein synthesis technology in NMR high-throughput structure determination. Methods Mol Biol 2010; 607: 127–147.
- 21 Vinarov DA,Newman CL,Tyler EM,Markley JL,Shahan MN. Wheat germ cell-free expression system for protein production. Curr Protoc Protein Sci 2006;Chapter 5:Unit 5 18.
- 22 Zolnai Z,Lee PT,Li J,Chapman MR,Newman CS,Phillips GN,Jr,Rayment I,Ulrich EL,Volkman BF,Markley JL. Project management system for structural and functional proteomics: Sesame. J Struct Funct Genomics 2003; 4: 11–23.
- 23 Otwinowski Z,Minor W. Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 1997; 276: 307–326.
- 24 Grosse-Kunstleve RW,Adams PD. Substructure search procedures for macromolecular structures. Acta Crystallogr D Biol Crystallogr 2003; 59 (Part 11): 1966–1973.
- 25 Schneider TR,Sheldrick GM. Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 2002; 58 (Part 10, Part 2): 1772– 1779.
- 26 Vonrhein C,Blanc E,Roversi P,Bricogne G. Automated structure solution with autoSHARP. Methods Mol Biol 2007; 364: 215–230.
- 27 Vagin A,Teplyakov A. MOLREP: an automated program for molecular replacement. J Appl Crystallogr 1997; 30: 1022–1025.
- 28 Emsley P,Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60 (Part 12, Part 1): 2126–2132.
- 29 Afonine PV,Grosse-Kunsteve RW,Adams PD. The Phenix refinement framework. CCP4 Newsl 2005; 42:contribution 8.
- 30 Davis IW,Leaver-Fay A,Chen VB,Block JN,Kapral GJ,Wang X,Murray LW,Arendall WB, III,Snoeyink J,Richardson JS,Richardson DC. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007; 35(Web Server issue): W375–W383.
- 31 Laskowski RA,Macarthur MW,Moss DS,Thornton JM. Procheck—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993; 26: 283–291.
- 32 Kabsch W. Solution for best rotation to relate 2 sets of vectors. Acta Crystallogr Sect A 1976; 32: 922–923.
- 33 Michigan State University Galdieria Database. Available at:http://genomics.msu.edu/galdieria. Accessed on March 2006.
- 34 Holm L,Kaariainen S,Rosenstrom P,Schenkel A. Searching protein structure databases with DaliLite v.3. Bioinformatics 2008; 24: 2780–2781.
- 35 Takeda S,Yamashita A,Maeda K,Maeda Y. Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form. Nature 2003; 424: 35–41.
- 36 Hu H,Chazin WJ. Unique features in the C-terminal domain provide caltractin with target specificity. J Mol Biol 2003; 330: 473–484.
- 37 Li S,Sandercock AM,Conduit P,Robinson CV,Williams RL,Kilmartin JV. Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication. J Cell Biol 2006; 173: 867–877.