Volume 79, Issue 5 pp. 1365-1375
Research Article

Folding determinants of disulfide bond forming protein B explored by solution nuclear magnetic resonance spectroscopy

Soyoun Hwang

Soyoun Hwang

Department of Chemistry, Center for Biological NMR, Texas A&M University, College Station, Texas 77843

Search for more papers by this author
Christian Hilty

Corresponding Author

Christian Hilty

Department of Chemistry, Center for Biological NMR, Texas A&M University, College Station, Texas 77843

Department of Chemistry, Center for Biological NMR, Texas A&M University, College Station, TX 77843===Search for more papers by this author
First published: 04 January 2011
Citations: 1

Abstract

The two-stage model for membrane protein folding postulates that individual helices form first and are subsequently packed against each other. To probe the two-stage model, the structures of peptides representing individual transmembrane helices of the disulfide bond forming protein B have been studied in trifluoroethanol solution as well as in detergent micelles using nuclear magnetic resonance (NMR) and circular dichroism spectroscopy. In TFE solution, peptides showed well-defined α-helical structures. Peptide structures in TFE were compared to the structures of full-length protein obtained by X-ray crystallography and NMR. The extent of α-helical secondary structure coincided well, lending support for the two-stage model for membrane protein folding. However, the conformation of some amino acid side chains differs between the structures of peptide and full-length protein. In micellar solution, the peptides also adopted a helical structure, albeit of reduced definition. Using measurements of paramagnetic relaxation enhancement, peptides were confirmed to be embedded in micelles. These observations may indicate that in the native protein, tertiary interactions additionally stabilize the secondary structure of the individual transmembrane helices. Proteins 2011. © 2011 Wiley-Liss, Inc.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.