Functional and structural characterization of the catalytic domain of the starch synthase III from Arabidopsis thaliana
Maria V. Busi
IIB-INTECH, CONICET-UNSAM, Camino Circunvalación km 6, 7130, Chascomús, Buenos Aires, Argentina
Search for more papers by this authorNicolas Palopoli
Centro de Estudios e Investigaciones, UNQ, Roque Saenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina
Search for more papers by this authorHugo A. Valdez
IIB-INTECH, CONICET-UNSAM, Camino Circunvalación km 6, 7130, Chascomús, Buenos Aires, Argentina
Search for more papers by this authorMaria S. Fornasari
Centro de Estudios e Investigaciones, UNQ, Roque Saenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina
Search for more papers by this authorNahuel Z. Wayllace
IIB-INTECH, CONICET-UNSAM, Camino Circunvalación km 6, 7130, Chascomús, Buenos Aires, Argentina
Search for more papers by this authorDiego F. Gomez-Casati
IIB-INTECH, CONICET-UNSAM, Camino Circunvalación km 6, 7130, Chascomús, Buenos Aires, Argentina
Search for more papers by this authorGustavo Parisi
Centro de Estudios e Investigaciones, UNQ, Roque Saenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina
Search for more papers by this authorCorresponding Author
Rodolfo A. Ugalde
IIB-INTECH, CONICET-UNSAM, Camino Circunvalación km 6, 7130, Chascomús, Buenos Aires, Argentina
IIB-INTECH, CONICET-UNSAM, Camino Circunvalación km 6, 7130, Chascomús, Buenos Aires, Argentina===Search for more papers by this authorMaria V. Busi
IIB-INTECH, CONICET-UNSAM, Camino Circunvalación km 6, 7130, Chascomús, Buenos Aires, Argentina
Search for more papers by this authorNicolas Palopoli
Centro de Estudios e Investigaciones, UNQ, Roque Saenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina
Search for more papers by this authorHugo A. Valdez
IIB-INTECH, CONICET-UNSAM, Camino Circunvalación km 6, 7130, Chascomús, Buenos Aires, Argentina
Search for more papers by this authorMaria S. Fornasari
Centro de Estudios e Investigaciones, UNQ, Roque Saenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina
Search for more papers by this authorNahuel Z. Wayllace
IIB-INTECH, CONICET-UNSAM, Camino Circunvalación km 6, 7130, Chascomús, Buenos Aires, Argentina
Search for more papers by this authorDiego F. Gomez-Casati
IIB-INTECH, CONICET-UNSAM, Camino Circunvalación km 6, 7130, Chascomús, Buenos Aires, Argentina
Search for more papers by this authorGustavo Parisi
Centro de Estudios e Investigaciones, UNQ, Roque Saenz Peña 352, B1876BXD Bernal, Buenos Aires, Argentina
Search for more papers by this authorCorresponding Author
Rodolfo A. Ugalde
IIB-INTECH, CONICET-UNSAM, Camino Circunvalación km 6, 7130, Chascomús, Buenos Aires, Argentina
IIB-INTECH, CONICET-UNSAM, Camino Circunvalación km 6, 7130, Chascomús, Buenos Aires, Argentina===Search for more papers by this authorAbstract
Glycogen and starch are the major energy storage compounds in most living organisms. The metabolic pathways leading to their synthesis involve the action of several enzymes, among which glycogen synthase (GS) or starch synthase (SS) catalyze the elongation of the α-1,4-glucan backbone. At least five SS isoforms were described in Arabidopsis thaliana; it has been reported that the isoform III (SSIII) has a regulatory function on the synthesis of transient plant starch. The catalytic C-terminal domain of A. thaliana SSIII (SSIII-CD) was cloned and expressed. SSIII-CD fully complements the production of glycogen by an Agrobacterium tumefaciens glycogen synthase null mutant, suggesting that this truncated isoform restores in vivo the novo synthesis of bacterial glycogen. In vitro studies revealed that recombinant SSIII-CD uses with more efficiency rabbit muscle glycogen than amylopectin as primer and display a high apparent affinity for ADP-Glc. Fold class assignment methods followed by homology modeling predict a high global similarity to A. tumefaciens GS showing a fully conservation of the ADP-binding residues. On the other hand, this comparison revealed important divergences of the polysaccharide binding domain between AtGS and SSIII-CD. Proteins 2008. © 2007 Wiley-Liss, Inc.
REFERENCES
- 1 Ball SG, Morell MK. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 2003; 54: 207–233.
- 2 Smith AM, Zeeman SC, Thorneycroft D, Smith SM. Starch mobilization in leaves. J Exp Bot 2003; 54: 577–583.
- 3 Zhang X, Myers AM, James MG. Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis. Plant Physiol 2005; 138: 663–674.
- 4 Ball S, Guan HP, James M, Myers A, Keeling P, Mouille G, Buleon A, Colonna P, Preiss J. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 1996; 86: 349–352.
- 5 Li Z, Mouille G, Kosar-Hashemi B, Rahman S, Clarke B, Gale KR, Appels R, Morell MK. The structure and expression of the wheat starch synthase III gene. Motifs in the expressed gene define the lineage of the starch synthase III gene family. Plant Physiol 2000; 123: 613–624.
- 6 Jobling S. Improving starch for food and industrial applications. Curr Opin Plant Biol 2004; 7: 210–218.
- 7 Coutinho PM, Deleury E, Davies GJ, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 2003; 328: 307–317.
- 8 Campbell JA, Davies GJ, Bulone V, Henrissat B A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 1997 326(Pt 3): 929–939.
- 9 Buschiazzo A, Ugalde JE, Guerin ME, Shepard W, Ugalde RA, Alzari PM. Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO J 2004; 23: 3196–3205.
- 10 Ugalde JE, Parodi AJ, Ugalde RA. De novo synthesis of bacterial glycogen: Agrobacterium tumefaciens glycogen synthase is involved in glucan initiation and elongation. Proc Natl Acad Sci USA 2003; 100: 10659–10663.
- 11 Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM,2nd, Peterson KM. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic- resistance cassettes. Gene 1995; 166: 175–176.
- 12 Ugalde JE, Lepek V, Uttaro A, Estrella J, Iglesias A, Ugalde RA. Gene organization and transcription analysis of the Agrobacterium tumefaciens glycogen (glg) operon: two transcripts for the single phosphoglucomutase gene. J Bacteriol 1998; 180: 6557–6564.
- 13 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.
- 14 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.
- 15 Bollag DM, Rozycki MD, Edelstein SJ. Protein methods. New York: Wiley-Liss; 1996. xvi, 415 p.
- 16 Greene TW, Kavakli IH, Kahn ML, Okita TW. Generation of up-regulated allosteric variants of potato ADP-glucose pyrophosphorylase by reversion genetics. Proc Natl Acad Sci USA 1998; 95: 10322–10327.
- 17 Krisman CR. A method for the colorimetric estimation of glycogen with iodine. Anal Biochem 1962; 4: 17–23.
- 18 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403–410.
- 19 Li W, Jaroszewski L, Godzik A. Sequence clustering strategies improve remote homology recognitions while reducing search times. Protein Eng 2002; 15: 643–649.
- 20 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876–4882.
- 21 Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.5c. Department of Genetics, University of Washington, Seattle, 1993. Distributed by the author, Available at http://evolutiongeneticswashingtonedu/phylip/getmehtml.
- 22 Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 1995; 11: 681–684.
- 23 Ginalski K, Grizhin NV, Godzik A, Rychlewski L. Practical lessons from protein structure prediction. Nucleic Acids Res 2005; 33: 1874–1891.
- 24 Jaroszewski L, Rychlewski L, Li Z, Li W, Godzik A. FFAS03: a server for profile–profile sequence alignments. Nucleic Acids Res 2005; 33(Web Server issue): W284–W288.
- 25 Shi J, Blundell TL, Mizuguchi K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 2001; 310: 243–257.
- 26 Kelley LA, MacCallum RM, Sternberg MJ. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 2000; 299: 499–520.
- 27 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28: 235–242.
- 28 Sippl MJ. Recognition of errors in three-dimensional structures of proteins. Proteins 1993; 17: 355–362.
- 29 Sanchez R, Sali A. Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci USA 1998; 95: 13597–13602.
- 30 Smythe C, Cohen P. The discovery of glycogenin and the priming mechanism for glycogen biogenesis. Eur J Biochem 1991; 200: 625–631.
- 31 Alonso MD, Lomako J, Lomako WM, Whelan WJ. A new look at the biogenesis of glycogen. FASEB J 1995; 9: 1126–1137.
- 32 Ferrer JC, Favre C, Gomis RR, Fernandez-Novell JM, Garcia-Rocha M, de la Iglesia N, Cid E, Guinovart JJ. Control of glycogen deposition. FEBS Lett 2003; 546: 127–132.
- 33 Baque S, Guinovart JJ, Ferrer JC. Glycogenin, the primer of glycogen synthesis, binds to actin. FEBS Lett 1997; 417: 355–359.
- 34 Nichols DJ, Keeling PL, Spalding M, Guan H. Involvement of conserved aspartate and glutamate residues in the catalysis and substrate binding of maize starch synthase. Biochemistry 2000; 39: 7820–7825.
- 35 Gao Z, Keeling P, Shibles R, Guan H. Involvement of lysine-193 of the conserved “K-T-G-G” motif in the catalysis of maize starch synthase IIa. Arch Biochem Biophys 2004; 427: 1–7.
- 36 Chatterjee M, Berbezy P, Darshna Vyas D, Coates S, Barsby T. Reduced expression of a protein homologous to glycogenin leads to reduction of starch content in Arabidopsis leaves. Plant Sci 2005; 168: 501–509.
- 37 Zeeman SC, Smith SM, Smith AM. The priming of amylose synthesis in Arabidopsis leaves. Plant Physiol 2002; 128: 1069–1076.
- 38 Bustos R, Fahy B, Hylton CM, Seale R, Nebane NM, Edwards A, Martin C, Smith AM. Starch granule initiation is controlled by a heteromultimeric isoamylase in potato tubers. Proc Natl Acad Sci USA 2004; 101: 2215–2220.
- 39 Torija MJ, Novo M, Lemassu A, Wilson W, Roach PJ, Francois J, Parrou JL. Glycogen synthesis in the absence of glycogenin in the yeast Saccharomyces cerevisiae. FEBS Lett 2005; 579: 3999–4004.
- 40 Imparl-Radosevich JM, Li P, Zhang L, McKean AL, Keeling PL, Guan H. Purification and characterization of maize starch synthase I and its truncated forms. Arch Biochem Biophys 1998; 353: 64–72.
- 41 Furukawa K, Tagaya M, Inouye M, Preiss J, Fukui T. Identification of lysine 15 at the active site in Escherichia coli glycogen synthase. Conservation of Lys-X-Gly-Gly sequence in the bacterial and mammalian enzymes. J Biol Chem 1990; 265: 2086–2090.
- 42 Furukawa K, Tagaya M, Tanizawa K, Fukui T. Role of the conserved Lys-X-Gly-Gly sequence at the ADP-glucose-binding site in Escherichia coli glycogen synthase. J Biol Chem 1993; 268: 23837–23842.
- 43 Davies SP, Helps NR, Cohen PT, Hardie DG. 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C α and native bovine protein phosphatase-2AC. FEBS Lett 1995; 377: 421–425.
- 44 Geremia S, Campagnolo M, Schinzel R, Johnson LN. Enzymatic catalysis in crystals of Escherichia coli maltodextrin phosphorylase. J Mol Biol 2002; 322: 413–423.
- 45 Horcajada C, Guinovart JJ, Fita I, Ferrer JC. Crystal structure of an archaeal glycogen synthase: insights into oligomerization and substrate binding of eukaryotic glycogen synthases. J Biol Chem 2006; 281: 2923–2931.
- 46 Barford D, Johnson LN. The molecular mechanism for the tetrameric association of glycogen phosphorylase promoted by protein phosphorylation. Protein Sci 1992; 1: 472–493.
- 47 O'reilly M, Watson KA, Schinzel R, Palm D, Johnson LN. Oligosaccharide substrate binding to E. coli maltodextrin phosphorylase. Nat Struct Biol 1997; 4: 405–412.
- 48 Watson KA, McCleverty C, Geremia S, Cottaz S, Driguez H, Johnson LN. Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question. EMBO J 1999; 18: 4619–4632.
- 49 Palopoli N, Busi MV, Fornasari MS, Gomez-Casati D, Ugalde R, Parisi G. Starch-synthase III family encodes a tandem of three starch-binding domains. Proteins 2006; 65: 27–31.
- 50 Machovic M, Janecek S. The evolution of putative starch-binding domains. FEBS Lett 2006; 580: 6349–6356.