Phase transitions of the rapid-compression-induced mesomorphic isotactic polypropylene under high-pressure annealing
Xiaobo Fu
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorWenxia Jia
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorXiaoting Li
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorYaming Wang
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorZhen Wang
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorChuntai Liu
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorChangyu Shen
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorCorresponding Author
Chunguang Shao
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Correspondence to: C. Shao (E-mail: [email protected])Search for more papers by this authorXiaobo Fu
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorWenxia Jia
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorXiaoting Li
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorYaming Wang
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorZhen Wang
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorChuntai Liu
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorChangyu Shen
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Search for more papers by this authorCorresponding Author
Chunguang Shao
National Engineering Research Center for Advanced Polymer Processing Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
Correspondence to: C. Shao (E-mail: [email protected])Search for more papers by this authorABSTRACT
The mesomorphic isotactic polypropylene was prepared by rapid compression instead of the common method of temperature quenching, and their phase transition under high pressure was investigated in depth by combining wide-angle X-ray diffraction, small-angle X-ray scattering, and differential scanning calorimetry techniques. It was found that annealing under pressure can promote the further arrangement of chain segments of the mesophase toward the crossed state in the orthorhombic γ-phase, and the long period of the mesophase slightly decreased from 8.2 to 7.2 nm. The kinetics of this meso-γ transition strongly depends on pressure. As annealing pressure increased, the mobility of molecular segments was reduced, and then the onset and finishing time of phase transition were both delayed significantly. A critical annealing pressure was found between 1.6 and 1.75 GPa, which determines whether the phase transition occurs or not. When pressure reaches 1.75 GPa, mesophase did not transform at all within 120 min. Based on the results, a reasonable mechanism was proposed to show the crystallization process of mesophase under high-pressure annealing. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 651–661
Supporting Information
Filename | Description |
---|---|
polb_24820_sup-0001-FigureS1.pdfPDF document, 197.8 KB | Figure S1 (a)-(c) Selected1-DWAXD profiles of the samples annealed for different time under 1.35 and 1.6 GPa. (b)-(d)Contents of amorphous, mesomorphic and γ-phases as a function of annealing time. (All the annealing temperatures were set at 200 oC) |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES AND NOTES
- 1C. De Rosa, F. Auriemma, R. D. Girolamo, O. R. D. Ballesteros, J. Polym. Sci. Part B: Polym. Phys. 2014, 52, 677.
- 2Q. Zia, H. J. Radusch, R. Androsch, Polym. Bull. 2009, 63, 755.
- 3X. Wang, Y. M. Pan, Y. J. Qin, M. Voigt, X. H. Liu, G. Q. Zheng, Q. Chen, D. W. Schubert, C. T. Liu, C. Y. Shen, Polym. Test. 2018, 69, 478.
- 4M. C. Xie, B. B. Chang, H. L. Liu, K. Dai, G. Q. Zheng, C. T. Liu, C. Y. Shen, J. B. Chen, Polym. Compos. 2013, 34, 1250.
- 5Z. Z. Liu, X. H. Liu, G. Q. Zheng, K. Dai, C. T. Liu, C. Y. Shen, J. Mater. Sci. 2015, 50, 599.
- 6J. Jiang, X. H. Liu, M. Lian, Y. M. Pan, Q. Chen, H. Liu, G. Q. Zheng, Z. H. Guo, D. W. Schubert, C. Y. Shen, Polym. Test. 2018, 67, 183.
- 7B. B. Chang, B. Wang, G. Q. Zheng, K. Dai, C. T. Liu, C. Y. Shen, Polym. Eng. Sci. 2015, 55, 2714.
- 8Y. Y. Liang, G. Q. Zheng, K. Dai, C. T. Liu, C. Y. Shen, J. Mater. Sci. 2013, 48, 2326.
- 9F. Auriemma, C. De Rosa, P. Corradini, Adv. Polym. Sci. 2005, 181, 1.
- 10P. Corradini, V. Petraccone, C. De Rosa, G. Guerra, Macromolecules 1986, 19, 2699.
- 11D. S. Langhe, A. Hiltner, E. Baer, J. Polym. Sci. Part B: Polym. Phys. 2011, 49, 1672.
- 12D. Mileva, R. Androsch, H. J. Radusch, Polym. Bull. 2009, 62, 561.
- 13D. Mileva, R. Androsch, E. Zhuravlev, C. Schick, Macromolecules 2009, 42, 7275.
- 14C. De Rosa, F. Auriemma, O. Tarallo, A. Malafronte, R. Di Girolamo, S. Esposito, F. Piemontesi, D. Liguori, G. Morini, Macromolecules 2017, 50, 5434.
- 15C. De Rosa, F. Auriemma, R. Di Girolamo, O. R. De Ballesteros, M. Pepe, O. Tarallo, A. Malafronte, Macromolecules 2013, 46, 5202.
- 16C. De Rosa, F. Auriemma, O. R. De Ballesteros, R. Di Girolamo, O. Tarallo, N. G. Galotto, Macromol. Chem. Phys. 2013, 214, 1951.
- 17S. C. Yuan, Z. Li, J. Kang, Y. L. Hong, A. Kamimura, A. Otsubo, T. Miyoshi, ACS Macro Lett. 2015, 4, 143.
- 18X. Y. Li, J. J. Ding, Y. P. Liu, X. Y. Tian, Polymer 2017, 108, 242.
- 19F. De Santis, S. Adamovsky, G. Titomanlio, C. Schick, Macromolecules 2006, 39, 2562.
- 20M. van Drongelen, T. B. van Erp, G. W. M. Peters, Polymer 2012, 53, 5896.
- 21C. M. Roland, S. Hensel-Bielowka, M. Paluch, R. Casalini, Rep. Prog. Phys. 2005, 68, 1405.
- 22C. S. Yuan, S. M. Hong, X. X. Li, R. Shen, Z. He, S. J. Lv, X. R. Liu, J. Lv, D. K. Xi, J. Phys. D Appl. Phys. 2011, 44, 165405.
- 23Q. Li, R. J. Zhang, C. G. Shao, Y. M. Wang, C. Y. Shen, Polym. Eng. Sci. 2015, 55, 359.
- 24X. R. Liu, S. M. Hong, S. J. Lu, R. Shen, Appl. Phys. Lett. 2007, 91, 540.
- 25S. M. Hong, L. Y. Chen, X. R. Liu, X. H. Wu, Rev. Sci. Instrum. 2005, 76, 053905.
- 26C. G. Shao, H. N. An, X. Wang, R. Jia, B. J. Zhao, Z. Ma, X. Y. Li, G. Q. Pan, L. B. Li, S. M. Hong, Macromolecules 2007, 40, 9475.
- 27R. Jia, C. G. Shao, L. Su, D. H. Huang, X. R. Liu, S. M. Hong, J. Phys. D Appl. Phys. 2007, 40, 3763.
- 28J. J. Huang, X. B. Fu, C. G. Shao, Z. Ma, Y. M. Wang, C. T. Liu, C. Y. Shen, Polym. Eng. Sci. 2018, 59, 439. doi 101002/pen.24940.
- 29A. Martorana, S. Piccarolo, D. Sapoundjieva, Macromol. Chem .Phys. 1999, 200, 531.
10.1002/(SICI)1521-3935(19990301)200:3<531::AID-MACP531>3.0.CO;2-K CAS Web of Science® Google Scholar
- 30Z. G. Wang, B. S. Hsiao, S. Srinivas, G. M. Brown, A. H. Tsou, S. Z. D. Cheng, R. S. Stein, Polymer 2001, 42, 7561.
- 31J. C. Zhao, Z. G. Wang, Y. H. Niu, B. S. Hsiao, S. Piccarolo, J. Phys. Chem. B 2012, 116, 147.
- 32Q. H. Jiang, Y. Zhao, C. B. Zhang, J. Yang, Y. Z. Xu, D. J. Wang, Polymer 2016, 105, 133.
- 33C. De Rosa, F. Auriemma, Angew. Chem. Int. Ed. 2012, 51, 1207.
- 34A. Ferrero, E. Ferracini, A. Mazzavillani, V. Malta, J. Macromol. Sci. Part B 2000, 39, 109.
- 35R. Androsch, Macromolecules 2008, 41, 533.
- 36C. De Rosa, F. Auriemma, O. R. De Ballesteros, R. Di Girolamo, M. Pepe, O. Tarallo, A. Malafronte, Eur. Polym. J. 2013, 49, 3590.
- 37C. De Rosa, F. Auriemma, N. G. Galotto, R. Di Girolamo, Polymer 2012, 53, 2422.
- 38C. Wang, T. C. Hsieh, Y. W. Cheng, Macromolecules 2010, 43, 9022.
- 39J. E. K. Schawe, Thermochim. Acta 2015, 603, 85.
- 40Q. Zia, D. Mileva, R. Androsch, Macromolecules 2008, 41, 8095.
- 41Q. H. Jiang, C. B. Zhang, J. Yang, Y. Zhao, Y. Z. Xu, D. J. Wang, Chin. Chem. Lett. 2015, 26, 197.
- 42J. A. Sauer, K. D. Pae, J. Appl. Phys. 1968, 39, 4959.
- 43J. L. Kardos, J. L. Christiansen, E.,. J. Baer, Polym. Sci. Part A-2 1966, 4, 777.
- 44K. Mezghani, P. J. Phillips, Polymer 1997, 38, 5725.
- 45K. Mezghani, P. J. Phillips, Polymer 1998, 39, 3735.
- 46C. Angelloz, R. Fulchiron, A. Douillard, B. Chabert, R. F. And, A. Vautrin, L. David, Macromolecules 2000, 33, 4138.
- 47C. Nakafuku, Polymer 1981, 22, 1673.
- 48Y. H. Chen, H. Q. Yang, S. Yang, P. G. Ren, Q. Y. Zhang, Z. M. Li, J. Mater. Sci. 2017, 52, 5449.
- 49Y. Lu, Y. T. Wang, R. Chen, Y. F. Men, J. Polym. Sci. Part B: Polym. Phys. 2017, 55, 957.
- 50X. Y. Li, F. M. Su, Y. X. Ji, N. Tian, J. Lu, Z. Wang, Z. M. Qi, L. B. Li, Soft Matter 2013, 9, 8579.
- 51Q. Zia, R. Androsch, H. J. Radusch, S. Piccarolo, Polymer 2006, 47, 8163.
- 52N. S. Murthy, H. Minor, Polymer 1990, 31, 996.
- 53C. C. Hsu, P. H. Geil, H. Miyaji, K. Asai, J. Polym. Sci. Part B: Polym. Phys. 1986, 24, 2379.
- 54T. Konishi, K. Nishida, T. Kanaya, Macromolecules 2006, 39, 9.
- 55Z. Ma, C. G. Shao, X. Wang, B. J. Zhao, X. Y. Li, H. N. An, T. Z. Yan, Z. M. Li, L. B. Li, Polymer 2009, 50, 2706.
- 56G. R. Strobl, J. Polym. Sci. Polym. Phys. Ed 1980, 18, 1343.
- 57R. Thomann, C. Wang, A. Jörg Kressler, R. Mülhaupt, Macromolecules 1996, 29, 8425.
- 58S. Brückner, S. V. Meille, Nature 1989, 340, 455.
- 59Y. G. Yu, Macromolecules 2015, 48, 5959.
- 60R. Zannetti, G. Celotti, A. Fichera, R. Francesconi, Macromol. Chem. Phys. 1969, 128, 137.
- 61Y. Jin, A. Hiltner, E. Baer, R. Masirek, E. Piorkowska, A. Galeski, J. Polym. Sci. Part B: Polym. Phys. 2010, 44, 1795.
- 62H. Asakawa, K. Nishida, J. Yamamoto, R. Inoue, T. Kanaya, Polymer 2012, 53, 2777.
- 63B. Wunderlich, Prog. Polym. Sci. 2003, 28, 383.
- 64H. Ito, Y. Tsutsumi, K. Minagawa, J. Takimoto, K. Koyama, Colloid Polym. Sci. 1995, 273, 811.
- 65A. Gitsas, G. Floudas, Macromolecules 2008, 41, 9423.
- 66R. Androsch, M. L. Di Lorenzo, C. Schick, B. Wunderlich, Polymer 2010, 51, 4639.
- 67A. G. S. Hollander, K. O. Prins, J. Non Cryst. Solids 2001, 286, 1.