Polypropylene modified with elastomeric metallocene-catalyzed polyolefin blends: Fracture behavior and development of damage mechanisms
Laura A. Fasce
División Polímeros, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Avenida J.B. Justo 4302, 7600, Mar del Plata, Argentina
Search for more papers by this authorCorresponding Author
Patricia M. Frontini
División Polímeros, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Avenida J.B. Justo 4302, 7600, Mar del Plata, Argentina
División Polímeros, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Avenida J.B. Justo 4302, 7600, Mar del Plata, ArgentinaSearch for more papers by this authorShing-Chung Wong
School of Materials Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798
Search for more papers by this authorYiu-Wing Mai
Center for Advanced Materials Technology, School of Aerospace, Mechanical, and Mechatronic Engineering J07, University of Sydney, Sydney, NSW 2006 Australia
Search for more papers by this authorLaura A. Fasce
División Polímeros, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Avenida J.B. Justo 4302, 7600, Mar del Plata, Argentina
Search for more papers by this authorCorresponding Author
Patricia M. Frontini
División Polímeros, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Avenida J.B. Justo 4302, 7600, Mar del Plata, Argentina
División Polímeros, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Avenida J.B. Justo 4302, 7600, Mar del Plata, ArgentinaSearch for more papers by this authorShing-Chung Wong
School of Materials Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798
Search for more papers by this authorYiu-Wing Mai
Center for Advanced Materials Technology, School of Aerospace, Mechanical, and Mechatronic Engineering J07, University of Sydney, Sydney, NSW 2006 Australia
Search for more papers by this authorAbstract
The fracture behavior and deformation mechanisms of polypropylene modified by elastomeric metallocene-catalyzed polyolefin blends were investigated under both static and dynamic loading conditions. The fracture toughness was evaluated with the J integral approach. The development of damage mechanisms was studied by the examination of fracture surfaces with scanning electron microscopy and by the examination of single-edge, double-notch, four-point-bending or low-impact-energy fractured samples with optical microscopy. In addition, tensile dilatometry measurements were carried out to determine the nature of the deformation micromechanisms. The fracture behavior and the size and shape of the damage zones were drastically influenced by the elastomeric particles and the imposed constraint. The role of the elastomeric particles was different, depending on the strain rate. Under impact loading, particle pullout and crazing were responsible for the increased fracture toughness of polypropylene. Under quasistatic loading, stable fracture growth was caused by particle cavitation, which promoted ductile tearing of polypropylene before failure continued in an unstable fashion via crazing. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1075–1089, 2004
REFERENCES AND NOTES
- 1 Inoue, T.; Suzuki, T. J Appl Polym Sci 1996, 59, 1443–1450.
- 2 Hodgkinson, J. M.; Savadori, A.; Williams, J. G. J Mater Sci 1986, 18, 2319–2336.
- 3 Jiang, W.; Tjong, S. C.; Li, R. K. Y. Polymer 2000, 41, 3479–3482.
- 4 Dao, K. C. J Appl Polym Sci 1982, 27, 4799–4806.
- 5 Silvis, H. C.; Cieslinski, R. C.; Murray, D. J.; Chum, S. P. Presented in Advances in Automotive Plastic Components and Technology, International Congress and Exposition, Detroit, MI, (1–5) March, 1995, pp 69–75.
- 6
Da Silva, A. L. N.;
Tavares, M. I. B.;
Politano, D. R.;
Coutinho, F. M. B.;
Rocha, M. C. G.
J Appl Polym Sci
1997,
66,
2005–2014.
10.1002/(SICI)1097-4628(19971205)66:10<2005::AID-APP17>3.0.CO;2-2 CAS Web of Science® Google Scholar
- 7 Lotti, C.; Correa, C. A.; Canevarolo, S. Mater Res 2000, 3, 37–44.
- 8 Anderson, T. Fracture Mechanics: Fundamentals and Applications, 2nd ed.; CRC: Boca Raton, FL, 1995; Chapter 6.
- 9 Sue, H. J.; Yee, A. F. J Mater Sci 1989, 24, 1447–1457.
- 10 Nair, S. V.; Wong, S. C.; Goettler, L. A. J Mater Sci 1997, 32, 5335–5346.
- 11 Shiao, M. L.; Nair, S. V.; Garret, P. D.; Pollard, R. E. Polymer 1994, 35, 306–314.
- 12 Da Silva, A. L. N.; Rocha, M. C.; Coutinho, F. M.; Bretas, R. E. S.; Farah, M. Polym Test 2002, 21, 647–652.
- 13 Major, Z.; Lang, R. Deformation,Yield and Fracture of Polymers; Cambridge University Press: Cambridge, England, 2000; pp 470–473.
- 14 Standard Test Method for Measurement of Fracture Toughness; ASTM E 1820; American Society for Testing and Materials: West Conshohocken, PA, 1999.
- 15 Sue, H.-J. Polym Eng Sci 1991, 31, 275–288.
- 16 Smith, J. W. In Optical Microscopy, Fractography and Failure Mechanisms of Polymers and Composites; A. C. Roulin-Moloney, Ed.; Elsevier: London, 1989; Chapter 1.
- 17 Liu, Z. H.; Zhang, X. D.; Zhu, X. G.; Qi, Z. N.; Wang, F. S. Polymer 1997, 38, 5267–5273.
- 18 Fasce, L.; Frontini, P. Presented at I Simposio Binacional de Polímeros Argentino-Chileno y V Simposio Argentino de Polímeros, Mar del Plata, Argentina, Dec 10–11, 2001.
- 19 Fasce, L.; Pettarín, V.; Seltzer, R.; Frontini, P. Polym Eng Sci 2003, 43, 1081–1095.
- 20 Ruggieri, C.; Gao, X.; Dodds, R. H., Jr. Eng Fract Mech 2000, 67, 101–117.
- 21 McCabe, D. E.; Merkle, J. G.; Nanstad, R. K. Fract Mech 1994, 24, 215–232.
- 22 McCabe, D. E. Fract Mech 1993, 23, 80–94.
- 23 Santarelli, E.; Frontini, P. Polym Eng Sci 2001, 41, 1803–1814.
- 24 Fasce, L.; Frontini, P. J Macromol Sci Phys 2002, 41, 1231–1248.
- 25 Cieslinski, R. C.; Silvis, C. H.; Murray, D. J. Polymer 1995, 36, 1827–1833.
- 26 Kim, G.; Michler, G. Polymer 1998, 39, 5689–5697.
- 27 Lee, L. H.; Mandell, J. F.; Mcgarry, F. J Polym Eng Sci 1987, 27, 1128–1136.
- 28 Sehanobish, K.; Chudnovsky, A.; Moet, A. Polymer 1993, 34, 1212–1215.
- 29 Narisawa, I. Polym Eng Sci 1987, 27, 41–45.
- 30 Gensler, R.; Plummer, C. J. G.; Grein, C.; Kausch, H.-H. Polymer 2000, 41, 3809–3819.
- 31 Ni, B.; Li, J.; Berry, V. Polymer 1991, 32, 2766–2770.
- 32 Plummer, C. J. G.; Donald, A. M. J Mater Sci 1989, 24, 1399–1405.
- 33 Wu, J. S.; Mai, Y.-W. J Mater Sci 1993, 28, 6167–6177.
- 34 Wallheinke, K.; Pötschke, P.; Macosko, C.; Stuzt, H. Polym Eng Sci 1999, 39, 1022–1034.
- 35 Premphet, K.; Paecharoenchai, W. J Appl Polym Sci 2001, 82, 2140–2149.
- 36 Jang, B. Z.; Uhlmann, D. R.; Vander Sande, J. B. Polym Eng Sci 1985, 25, 643–651.
- 37 Seidler, S.; Koch, T.; Kotter, I.; Grellmann, W. Presented at the 10th International Conference of Fracture, Honolulu, Hawaii, 2001; Paper 100676OR.
- 38 Zebarjad, S.; Lazzeri, A.; Bagheri, R.; Seyed Reinhani, S. M.; Frounchi, M. Mater Lett 2003, 57, 2733–2741.
- 39 Kakugo, M.; Sadatoshi, H.; Yokoyama, M. J Polym Sci Part C: Polym Lett 1986, 24, 171–175.
- 40 Correa, C. A.; Hage, E., Jr. Polymer 1999, 40, 2171–2173.
- 41 Liu, Z. H.; Zhang, X. D.; Zhu, X. G.; Qi, Z. N.; Wang, F. S. Polymer 1997, 38, 5267–5273.
- 42 Lotti, C.; Correa, C.; Canevarolo, S. Mater Res 2000, 3, 37–44.
- 43 Chou, C.; Vijayan, K.; Kirby, D.; Hiltner, A.; Baer, E. J Mater Sci 1988, 23, 2533–2545.
- 44 Seidler, S.; Grellmann, W. Macromol Symp 1999, 147, 63–71.
- 45
Grein, C.;
Beguelin, P.;
Plummer, C.;
Kasuch, H.;
Teze, L.;
Germain, Y. In
Fracture of Polymers, Composites and Adhesives; ESIS 27;
J. G. Williams;
A. Pavan, Eds.;
Elsevier:
Oxford,
2000; pp
319–333.
10.1016/S1566-1369(00)80028-X Google Scholar
- 46 Gaymans, L. H. In Polymer Blends; D. R. Paul; C. B. Bucknall, Eds.; Wiley: New York, 2000; Vol. 2, Chapter 25.