Investigation of sequence isomer effects in AB-polybenzimidazole polymers
Alexander L. Gulledge
Department of Chemistry and Biochemistry and USC NanoCenter, University of South Carolina, Columbia, South Carolina
Search for more papers by this authorXiaoming Chen
Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
Search for more papers by this authorCorresponding Author
Brian C. Benicewicz
Department of Chemistry and Biochemistry and USC NanoCenter, University of South Carolina, Columbia, South Carolina
Correspondence to: B. C. Benicewicz (E-mail: [email protected])Search for more papers by this authorAlexander L. Gulledge
Department of Chemistry and Biochemistry and USC NanoCenter, University of South Carolina, Columbia, South Carolina
Search for more papers by this authorXiaoming Chen
Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
Search for more papers by this authorCorresponding Author
Brian C. Benicewicz
Department of Chemistry and Biochemistry and USC NanoCenter, University of South Carolina, Columbia, South Carolina
Correspondence to: B. C. Benicewicz (E-mail: [email protected])Search for more papers by this authorABSTRACT
In the present work, a unique series of random polybenzimidazole (PBI) copolymers consisting of the recently reported novel isomeric AB-PBI (i-AB-PBI) and the well known AB-PBI were synthesized. The i-AB-PBI incorporates additional linkages (2,2 and 5,5) in the benzimidazole sequence when compared with AB-PBI. Random copolymers, varying in composition at 10 mol % increments, were synthesized to evaluate the effects of sequence isomerism in the polymer main chain without altering the fundamental chemical composition or functionality of a polymer chain consisting of 2,5-benzimidazole units. Polymer solutions were prepared in polyphosphoric acid (PPA) and cast into membranes using the sol–gel PPA process. The resulting polymers were found to have high inherent viscosities (>2.0 dL/g) and showed elevated membrane proton conductivities (∼0.2 S/cm) under anhydrous conditions at 180 °C. Fuel cell performance evaluations were conducted, and an average output voltage ranging from 0.5 to 0.60 V at 0.2 A/cm2 was observed for hydrogen/air at an operational temperature of 180 °C without applied backpressure or humidification. Herein, we report for the first time glass transition (Tg) temperatures for AB-PBI, i-AB-PBI, and an anomalous Tg effect for the series of randomized PBIs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 619–628
REFERENCES AND NOTES
- 1B. C. H. Steele, A. Heinzel, Nature 2001, 414, 345–352.
- 2B. C. H. Steele, J. Mater. Sci. 2001, 36, 1053–1068.
- 3H. Ekstrom, B. Lafitte, J. Ihonen, H. Markusson, P. Jacobsson, A. Lundblad, P. Jannasch, G. Lindbergh, Solid State Ionics 2007, 178, 959–966.
- 4G. Qian, B. C. Benicewicz, ECS Trans. 2011, 41, 1441–1448.
- 5P. Jannasch, Curr. Opin. Colloid Interface Sci. 2003, 8, 96–102.
- 6J. Mader, L. Xiao, T. J. Schmidt, B. C. Benicewicz, Adv. Polym. Sci. 2008, 216, 63–124.
- 7S. Yu, L. Xiao, B. C. Benicewicz, Fuel Cells 2008, 3–4, 165–174.
- 8C. Shogbon, J. Brousseau, H. Zhang, B. C. Benicewicz, Y. Akpalu, Macromolecules 2006, 39, 9409–9418.
- 9A. Sannigrahi, S. Ghosh, S. Maity, T. Jana, Polymer 2010, 51, 5929–5941.
- 10T. Kojima, J. Polym. Sci. Polym. Phys. Ed. 1980, 18, 1685–1695.
- 11C. B. Shogbon, J. L. Brousseau, H. Zhang, B. C. Benicewicz, Y. Akpalu, Macromolecules 2006, 39, 9409–9418.
- 12A. Sannigrahi, D. Arunbabu, R. M. Sankar, T. Jana, Macromolecules 2007, 40, 2844–2851.
- 13V. Deimede, G. A. Voyiatzis, J. K. Kallitsis, Q. Li, N. Bjerrum, Macromolecules 2000, 33, 7609–7617.
- 14D. Arunbabu, A. Sannigrahi, T. Jana, J. Phys. Chem. B 2008, 112, 5305–5310.
- 15M. Hazarika, T. Jana, ACS Appl. Mater. Interfaces 2012, 4, 5256–5265.
- 16M. Hazarika, Eur. Polym. J. 2013, 49, 1564–1576.
- 17R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, C. Rogers, J. Electrochem. Soc. 1994, 141, L46–L48.
- 18J. R. P. Jayakody, S. H. Chung, L. Durantino, H. Zhang, L. Xiao, B. C. Benicewicz, S. G. Greenbaum, J. Electrochem. Soc. 2007, 154, B242–B246.
- 19E. W. Choe, D. D. Choe, In Polymeric Materials Encyclopedia; J. C. Salamone, Ed.; CRC Press: New York, 1996, 17, 5619–5638.
- 20S. R. Samms, S. Wasmus, R. F. Savinell, J. Electrochem. Soc. 1996, 143, 1225–1232.
- 21Q. Li, J. O. Jensen, R. F. Savinell, N. J. Bjerrum, Prog. Polym. Sci. 2009, 34, 449–477.
- 22D. C. Seel, B. C. Benicewicz, L. Xiao, T. J. Schmidt, Handbook of Fuel Cells 2009, 5, 300–312.
- 23A. Sannigrahi, D. Arunbabu, R. M. Sankar, T. Jana, J. Phys. Chem. B 2007, 111, 12124–12132.
- 24M. P. Kulkarni, O. D. Thomas, T. J. Peckhm, S. Holdcroft, Macromolecules 2007, 40, 983–990.
- 25S. Maity; T. Jana, Macromolecules 2013, 46, 6814–6823.
- 26L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E. W. Choe, L. S. Ramanathan, S. Yu, B. C. Benicewicz, Fuel Cells 2005, 2, 287–295.
- 27S. Yu, B. C. Benicewicz, Macromolecules 2009, 42, 8640–8648.
- 28S. Kang, C. Zhang, G. Xiao, D. Yan, G. Sun, J. Membr. Sci. 2009, 334, 91–100.
- 29G. Qian, B. C. Benicewicz, J. Polym. Sci. A 2009, 47, 4064–4073.
- 30S. Arindam, G. Sandip, M. Sudhangshu, T. Jana, Polymer 2010, 51, 5929–5941.
- 31F. Ng, B. Bae, K. Miyatake, M. Watanabe, Chem. Commun. 2011, 47, 8895–8897.
- 32J. Mader, B. Benicewicz, Fuel Cells 2011, 2, 222–237.
- 33D. Seel, B. C. Benicewicz, J. Membr. Sci. 2012, 405–406, 57–67.
- 34A. Gulledge, B. Gu, B. Benicewicz, J. Polym. Sci. A 2012, 50, 306–313.
- 35L. Xiao, H. Zhang, E. Scanlon, S. L. Ramanathan, E. W. Choe, D. Rogers, T. Apple, B. C. Benicewicz, Chem. Mater. 2005, 17, 5328–5333.
- 36 Dictionary of Organic Compounds, 4th ed.; G. Harris, J. R. A. Pollock; R. Stevens, Eds.; Oxford University Press: Oxford, 1965; Vol. 2, 854.
- 37P. J. Flory, Farad. Discuss. Chem. Soc. 1974, 57, 7–18.
- 38J. A. Mader, B. C. Benicewicz, Macromolecules 2010, 43, 6706–6715.
- 39J. A. Mader, B. C. Benicewicz, Fuel Cells 2011, 2, 212–221.
- 40P. Flory, Principles of Polymer Chemistry; Cornell University Press: Ithaca, 1953, pp 321–322.
- 41W. J. Carothers, J. Am. Chem. Soc. 1929, 51, 2548–2559.
- 42E. W. Neuse, Adv. Polym. Sci. 1982, 47, 1–42.
- 43A. Buckley, D. E. Stuetz, G. A. Serad, Encyclopedia of Polymer Science and Technology; Wiley: New York, 1988; Vol. 11, pp 572–601.
- 44T. S. Chung, Plast. Eng. 1997, 41, 701–731.
- 45Q. Li, R. He, R. W. Berg, H. A. Hjuler, N. Bjerrum, J. Solid State Ionics 2004, 168, 177–185.
- 46T. G. Fox, P. J. Flory, J. Appl. Phys. 1950, 21, 581–591.
- 47R. B. Beevers, Trans. Faraday Soc. 1962, 58, 1465–1472.
- 48N. W. Johnston, J. Macromol. Sci. Chem. 1973, A7, 531–545.
- 49N. W. Johnston, Polym. Prep. Am. Chem. Soc. Div. Polym. Chem. 1969, 10, 608–614.
- 50N. W. Johnston, J. Macromol. Sci. Rev. Macromol. Chem. 1976, C14, 215–250.
- 51T. Ma, Y. F. Li, S. J. Zhang, F. C. Yang, C. L. Gong, J. J. Zhao, Y. F. Li, Chin. Chem. Lett. 2011, 21, 976–978.
- 52J. R. Klaehn, C. J. Orme, E. S. Peterson, F. F. Stewart, J. M. Urban-Klaehn, Membr. Sci. Technol. Ser. 2011, 14, 295–307.
- 53Z. Liang, X. Jiang, H. Xu, D. Chen, J. Yin, Macromol. Chem. Phys. 2009, 210, 1632–1639.
- 54S. C. Kumbharkar, N. Islam, R. A. Potrekar, U. K. Kharul, Polymer 2009, 50, 1403–1413.
- 55V. V. Korshak, A. A. Izyneev, I. S. Novak, E. M. Etonova, Doklady Adademii Nauk SSSR 1975, 220, 597–600.
- 56S. Maity, A. Sannigrahi, S. Ghosh, T. Jana, Eur. Polym. J. 2013, 49, 2280–2292.
- 57H. Vogel, C. S. Marvel, J. Polym. Sci. 1961, 50, 511–539.
- 58H. Vogel, C. S. Marvel, J. Polym. Sci. Part A 1963, 1, 1531–1541.
- 59N. Agmon, Chem. Phys. Lett. 1995, 244, 456–462.
- 60J. A. Asensio, P. Gomez-Romero, Fuel Cells 2005, 5, 336–343.