Tailor-made hybrid nanostructure of poly(ethyl acrylate)/clay by surface-initiated atom transfer radical polymerization
Haimanti Datta
Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
Search for more papers by this authorAnil K. Bhowmick
Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
Search for more papers by this authorCorresponding Author
Nikhil K. Singha
Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, IndiaSearch for more papers by this authorHaimanti Datta
Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
Search for more papers by this authorAnil K. Bhowmick
Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
Search for more papers by this authorCorresponding Author
Nikhil K. Singha
Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, IndiaSearch for more papers by this authorAbstract
Hybrid nanoarchitecture of tailor-made Poly(ethyl acrylate)/clay was prepared by surface-initiated atom transfer radical polymerization (SI-ATRP), by tethering ATRP initiator on active hydroxyl group, present in surface as well as in the organic modifier of the clay used. Extensive exfoliation was facilitated by using these initiator modified clay platelets. Poly(ethyl acrylate) chains with controlled polymerization and narrow polydispersities were forced to be grown from within the clay gallery (intergallery) as well as from the outer surface (extragallery) of the clay platelets. The polymer chains attached onto clay surfaces might have the potential to provide the composites with enhanced compatibility in blends with common polymers. Attachment of the initiator on clay platelets was confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), elemental analysis, Wide-angle X-ray diffraction (WAXD), and microscopic analysis. Finally, end group analysis (by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry, and chain extension experiment) of the cleaved polymer and morphological study (by WAXD, Transmission Electron Microscopy), performed on the polymer grafted clays examined the effect of grafting on the efficiency of polymerization and the degree of dispersion of clay tactoids in polymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5014–5027, 2008
Supporting Information
This article contains Supplementary Material available via the Internet at http://www.interscience.wiley.com/jpages/0887-624X/suppmat .
Filename | Description |
---|---|
pola22829-FigureS1.tif1.1 MB | Figure S1.Variation of carbon content with grafting % |
pola22829-FigureS2.tif1.1 MB | Figure S2.Semilogarithmic kinetic plots for the SI-ATRP of EA at 90°C in bulk and inp -xylene. |
pola22829-FigureS3.tif1.5 MB | Figure S3.Kinetic plots of ln([M]o/[M]) versus reaction time for SI-ATRP of EA in bulk at different temperatures.[HA]/[MBrP]/[CuBr]/[PMDETA] : 100/1/1/1. |
pola22829-FigureS4.tif1.2 MB | Figure S4.Plots of Mn SEC </sup? and PDI versus monomer conversion for SI-ATRP of EA (bound polymer).The straight line designate theoretical molecular weight. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES AND NOTES
- 1 Prucker, O.;Ruhe, J. Macromolecules 1998, 313, 592–601.
- 2 Zhao, B.;Brittain, W. J. Prog Polym Sci 2000, 25, 677–710.
- 3(a) Ramstedt, M.;Cheng, N.;Azzaroni, O.;Mossialos, D.;Mathieu, H.-J.;Huck, W. T. S. Langmuir 2007, 23, 3314–3321; (b)Perruchot, C.;Khan, M. A.;Kamistsi, A.;Armes, S. P.;vonWerne, T.;Patten, T. E.Langmuir2000, 17, 4479–4481.
- 4 Ohno, K.;Koh, K.;Tsujii, Y.;Fukuda, T. Macromolecules 2002, 35, 8989–8993.
- 5 Zhao, H.;Shipp, D. Chem Mater 2003, 15, 2693–2695.
- 6 Fan, X.;Xia, C.;Fulghum, T.;Park, M.-K.;Locklin, J.;Advincula, R. C. Langmuir 2003, 19, 916–923.
- 7 Fan, X.;Xia, C.;Advincula, R. C. Langmuir 2003, 19, 4381–4389.
- 8 Kong, H.;Gao, C.;Yan, D. J Am Chem Soc 2004, 126, 412–413.
- 9 Qin, S.;Qin, D.;Ford, W. T.;Resasco, D. E.;Herrera, J. E. J Am Chem Soc 2004, 126, 170–176.
- 10 Zhou, Q.;Wang, S.;Fan, X.;Advincula, R.;Mays, J. Langmuir 2002, 18, 3324–3331.
- 11
Spange, S.;Meyer, T.
Macromol Chem Phys
1999,
200,
1655–1661.
10.1002/(SICI)1521-3935(19990701)200:7<1655::AID-MACP1655>3.0.CO;2-H CAS Web of Science® Google Scholar
- 12 Lahann, J.;Langer, R. Macromol Rapid Commun 2001, 22, 968–971.
- 13(a) Georges, M. K.;Moffat, K. A.;Veregin, R. P. N.;Kazmaier, P. M.;Hamer, J. K. Polym Mater Sci Eng 1993, 69, 305–306; (b)Konn, C.;Morel, F.;Beyou, E.;Chaumont, P.;Lami, B.Macromolecules2007, 40, 7464–7472.
- 14 Chiefari, J.;Chong, Y. K.;Ercole, F.;Krstina, J.;Jeffery, J.;Le, T. P. T.;Mayadunne, R. T. A.;Meijs, G. F.;Moad, C. L.;Moad, G.;Rizzardo, E.;Thang, S. H. Macromolecules 1998, 31, 5559–5562.
- 15 Perruchot, C.;Khan, M. A.;Kamitsi, A.;Armes, S. P.;Werne, T. V.Patten, T. E. Langmuir 2001, 17, 4479–4481.
- 16 (a) Pyun, J.;Matyjaszewski, K. Chem Mater 2001, 13, 3436–3448; (b)Pyun, J.;Jia, S.;Kowalewski, T.;Patterson, G. D.;Matyjaszewski, K.Macromolecules2003, 36, 5094–5104; (c)Pyun, J.;T Kowalewski, T.;Matyjaszewski, K.Macromol Rapid Commun2003, 24, 1043–1059; (d)Savin, D. A.;Pyun, J.;Patterson, G. D.;Kowalewski, T.;Matyjaszewski, K.J Polym Sci Part B: Polym Phys2002, 40, 2667–2676.
- 17 Mori, H.;Seng, D. C.;Zhang, M.;Müller, A. H. E. Langmuir 2002, 18, 3682–3693.
- 18(a) Li, C.;Benicewica, B. C. Macromolecules 2005, 38, 5929–5936; (b)Zheng, C.;Lee, L. J.Macromolecules2001, 34, 4098–4103.
- 19(a) Wang, J. S.;Matyjaszewski, K. J Am Chem Soc 1995, 117, 5614–5615; (b)Kato, M.;Kamigaito, M.;Sawamoto, M.;Higashimura, T.Macromolecules1995, 28, 1721–1723; (c)Percec, V.;Barboiu, B.;Kim, H. J.J Am Chem Soc1998, 120, 305–316.
- 20(a) Kojima, Y.;Usuki, A.;Kawasumi, M.;Okada, A.;Kurauchi, T.;Kamigaito, O. J Polym Sci Part A: Polym Chem 1993, 31, 983–986; (b)Usuki, A.;Kawasumi, M.;Kojima, Y.;Okada, A.;Kurauchi, T.;Kamigaito, O.J Mater Res1993, 8, 1174–1178; (c)Maiti, M.;Bhowmick, A. K.J Polym Sci Part B: Polym Phys2006, 44, 162–176; (d)Bandopadhyay, A.;Sarkar,De, M.;Bhowmick, A. K.Rubber Chem Technol2005, 78, 806–826.
- 21(a) Alexandre, M.;Dubois, P. Mater Sci Eng: R 2000, 28, 1–63; (b)Ray, S. S.;Okamoto, M.Prog Polym Sci2003, 28, 1539–1641; (c)Sadhu, S.;Bhowmick, A. K.J Polym Sci Part B: Polym Phys2005, 43, 1854–1864.
- 22 Bottcher, H.;Hallensleben, M. L.;Nu, S.;Wurm, H.;Bauer, J.;Behrens, P. J Mater Chem 2002, 12, 1351–1354.
- 23 Zhao, H.;Argoti, D. S.;Farrel, B. P.;Shipp, D. A. J Polym Sci Part A: Polym Chem 2004, 42, 916–924.
- 24 Li, C.-P.;Huang, C.-M.;Hseih, M.-T.;wei, K.-H. J Polym Sci Part A: Polym Chem 2005, 43, 534–542.
- 25 Jinabo, D.;Sogah, D. Y. Macromolecules 2006, 39, 1020–1028.
- 26Manufacturer's Cloisite 30B Literature. Available at www.scprod.com/productBulletins/PB%20Cloisite%2030B.pdf. Accessed January 21, 2008.
- 27 Datta, H.;Bhowmick, A. K.;Singha, N. K. J Polym Sci Part A: Polym Chem 2007, 45, 1661–1669.
- 28 Ok, J.;Matyjaszewski, K. J Inorg Organomet Polym Mater 2006, 16, 129–137.
- 29 Xie, W.;Gao, Z.;Pan, W.;Hunter, D.;Vaia, R. A.;Singh, A. PMSE Prepr 2000, 82, 284–285.
- 30(a)
Yui, T.;Yoshida, H.;Tachibana, H.;Tryk, D. A.;Inoue, H.;
Langmuir
2002,
18,
891–896;
(b)Greenland, D. J.;Quirk, J. P.Clays Clay Miner1960, 9, 484–499.
10.1346/CCMN.1960.0090136 Google Scholar
- 31 Blumstein, A. J Polym Sci Part A: Gen Pap 1965, 3, 2653–2664.
- 32 Von Werne, T.;Patten, T. E. J Am Chem Soc 2001, 123, 7497–7505.
- 33 Lide, D. R.;Frederikse, H. P. R. In CRC Handbook of Chemistry and Physics, 85th ed.; D. R. Lide, Ed.; CEC Press: New York, 2004–2005; pp 15–16.
- 34 Yu, Q.;Zeng, F.;Zhu, S. Macromolecules 2001, 34, 1612–1618.
- 35 Morinaga, T.;Ohkura, M.;Ohno, K.;Tsuji, Y.;Fukuda, T. Macromolecules 2007, 40, 1159–1164.
- 36 Datta, H.;Singha, N. K.;Bhowmick, A. K. Macromolecules 2008, 41, 50–57.
- 37 Wittmer, J.;Cates, M.;Johner, A.;Turner, M. Europhys Lett 1996, 33, 397–402.
- 38 Fu, X.;Qutubuddin, S. Polymer 2001, 42, 807–813.
- 39(a) Messersmith, P. B.;Giannelis, E. P. J Polym Sci Part A: Polym Chem 1995, 33, 1047–1057; (b)Tyan, H.-L.;Leu, C.-M.;Wei, K.-H.Chem Mater2002, 14, 3837–3843.
- 40 Roos, S. G.;Mueller, A. H. E.;Matyjaszewski, K. Macromolecules 1999, 32, 8331–8335.