Steroid myopathy and rehabilitation in patients with cancer
Corresponding Author
Vera Tsetlina MD
Department of Rehabilitation and Regenerative Medicine, NewYork-Presbyterial Columbia Irving Medical Center, New York, New York, USA
Correspondence
Vera Tsetlina, Department of Rehabilitation and Regenerative Medicine, NewYork-Presbyterian Columbia Irving Medical Center, 180 Fort Washington Avenue New York, NY 10019, USA.
Email: [email protected]
Search for more papers by this authorRay A. Stanford DO
Physical Medicine and Rehabilitation Department, Phoenix Children's Hospital, Phoenix, Arizona, USA
Search for more papers by this authorGrigory Syrkin MD
Department of Neurology, Rehabilitation Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
Search for more papers by this authorKatarzyna Ibanez MD
Department of Neurology, Rehabilitation Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
Search for more papers by this authorCorresponding Author
Vera Tsetlina MD
Department of Rehabilitation and Regenerative Medicine, NewYork-Presbyterial Columbia Irving Medical Center, New York, New York, USA
Correspondence
Vera Tsetlina, Department of Rehabilitation and Regenerative Medicine, NewYork-Presbyterian Columbia Irving Medical Center, 180 Fort Washington Avenue New York, NY 10019, USA.
Email: [email protected]
Search for more papers by this authorRay A. Stanford DO
Physical Medicine and Rehabilitation Department, Phoenix Children's Hospital, Phoenix, Arizona, USA
Search for more papers by this authorGrigory Syrkin MD
Department of Neurology, Rehabilitation Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
Search for more papers by this authorKatarzyna Ibanez MD
Department of Neurology, Rehabilitation Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
Search for more papers by this authorAnswer questions and earn CME credit.
Abstract
Steroids are broadly used in oncology, despite known adverse events such as glucocorticosteroid-induced myopathy (SM). To date there are no accepted guidelines on the diagnosis and treatment of SM. The purpose of this review is to provide up-to-date information regarding SM with emphasis on neuro-oncology and hematopoietic stem cell transplant patients, given they are at high risk of experiencing SM following routine treatment with steroids. Our work is a combination of a comprehensive narrative review regarding etiology, pathogenesis, incidence, clinical presentation and treatment options for SM and a scoping review on exercise therapy for SM. We have identified 24 in vivo studies of different exercise modalities in the settings of glucocorticosteroid treatment. Twenty of 24 studies demonstrated decreased muscle catabolism with exercise training. Both endurance and resistance exercises at mild to moderate intensity were beneficial. The value of high-intensity activities remains questionable as it may worsen muscle atrophy. Rehabilitation interventions, along with pharmacologic and dietary considerations, may be beneficial in preventing or reversing SM. Potential adverse events of some of these interventions and expected caveats in translating findings in preclinical models to human settings warrant caution and demand controlled clinical studies.
REFERENCES
- 1Batchelor TT, Taylor LP, Thaler HT, Posner JB, DeAngelis LM. Steroid myopathy in cancer patients. Neurology. 1997; 48(5): 1234-1238. doi:10.1212/wnl.48.5.1234
- 2Penack O, Marchetti M, Ruutu T, et al. Prophylaxis and management of graft versus host disease after stem-cell transplantation for haematological malignancies: updated consensus recommendations of the European Society for Blood and Marrow Transplantation. Lancet Haematol. 2020; 7(2): e157-e167. doi:10.1016/S2352-3026(19)30256-X
- 3Goldberg AL, Goodman HM. Relationship between cortisone and muscle work in determining muscle size. J Physiol (Lond). 1969; 200(3): 667-675. doi:10.1113/jphysiol.1969.sp008715
- 4Horber FF, Scheidegger JR, Grünig BE, Frey FJ. Evidence that prednisone-induced myopathy is reversed by physical training. J Clin Endocrinol Metab. 1985; 61(1): 83-88. doi:10.1210/jcem-61-1-83
- 5Horber FF, Scheidegger JR, Grünig BE, Frey FJ. Thigh muscle mass and function in patients treated with glucocorticoids. Eur J Clin Invest. 1985; 15(6): 302-307. doi:10.1111/j.1365-2362.1985.tb00276.x
- 6Kurowski TT, Chatterton RT, Hickson RC. Countereffects of compensatory overload and glucocorticoids in skeletal muscle: androgen and glucocorticoid cytosol receptor binding. J Steroid Biochem. 1984; 21(2): 137-145. doi:10.1016/0022-4731(84)90374-1
- 7Horber FF, Hoopeler H, Scheidegger JR, Grünig BE, Howald H, Frey FJ. Impact of physical training on the ultrastructure of midthigh muscle in normal subjects and in patients treated with glucocorticoids. J Clin Invest. 1987; 79(4): 1181-1190. doi:10.1172/JCI112935
- 8Gardiner PF, Hibl B, Simpson DR, Roy R, Edgerton VR. Effects of a mild weight-lifting program on the progress of glucocorticoid-induced atrophy in rat hindlimb muscles. Pflugers Arch. 1980; 385(2): 147-153. doi:10.1007/bf00588695
- 9Braith RW, Welsch MA, Mills RM, Keller JW, Pollock ML. Resistance exercise prevents glucocorticoid-induced myopathy in heart transplant recipients. Med Sci Sports Exerc. 1998; 30(4): 483-489. doi:10.1097/00005768-199804000-00003
- 10Garrel DR, Delmas PD, Welsh C, Arnaud MJ, Hamilton SE, Pugeat MM. Effects of moderate physical training on prednisone-induced protein wasting: a study of whole-body and bone protein metabolism. Metab Clin Exp. 1988; 37(3): 257-262. doi:10.1016/0026-0495(88)90105-9
- 11Hickson RC, Davis JR. Partial prevention of glucocorticoid-induced muscle atrophy by endurance training. Am J Physiol. 1981; 241(3): E226-E232. doi:10.1152/ajpendo.1981.241.3.E226
- 12Hickson RC, Kurowski TT, Capaccio JA, Chatterton RT. Androgen cytosol binding in exercise-induced sparing of muscle atrophy. Am J Physiol. 1984; 247(5): E597-E603. doi:10.1152/ajpendo.1984.247.5.E597
- 13Hickson RC, Galassi TM, Capaccio JA, Chatterton RT. Limited resistance of hypertrophied skeletal muscle to glucocorticoids. J Steroid Biochem. 1986; 24(6): 1179-1183. doi:10.1016/0022-4731(86)90380-8
- 14Hickson RC, Kurowski TT, Andrews GH, Capaccio JA, Chatterton RT. Glucocorticoid cytosol binding in exercise-induced sparing of muscle atrophy. J Appl Physiol. 1986; 60(4): 1413-1419. doi:10.1152/jappl.1986.60.4.1413
- 15Barel M, Perez OAB, Giozzet VA, Rafacho A, Bosqueiro JR, do Amaral SL. Exercise training prevents hyperinsulinemia, muscular glycogen loss and muscle atrophy induced by dexamethasone treatment. Eur J Appl Physiol. 2010; 108(5): 999-1007. doi:10.1007/s00421-009-1272-6
- 16Uchikawa K, Takahashi H, Hase K, Masakado Y, Liu M. Strenuous exercise-induced alterations of muscle fiber cross-sectional area and fiber-type distribution in steroid myopathy rats. Am J Phys Med Rehabil. 2008; 87(2): 126-133. doi:10.1097/PHM.0b013e31815869d0
- 17Falduto MT, Czerwinski SM, Hickson RC. Glucocorticoid-induced muscle atrophy prevention by exercise in fast-twitch fibers. J Appl Physiol. 1990; 69(3): 1058-1062. doi:10.1152/jappl.1990.69.3.1058
- 18Falduto MT, Young AP, Hickson RC. Exercise interrupts ongoing glucocorticoid-induced muscle atrophy and glutamine synthetase induction. Am J Physiol. 1992; 263(6): E1157-E1163. doi:10.1152/ajpendo.2006.263.6.E1157
- 19Falduto MT, Hickson RC, Young AP. Antagonism by glucocorticoids and exercise on expression of glutamine synthetase in skeletal muscle. FASEB J. 1989; 3(14): 2623-2628. doi:10.1096/fasebj.3.14.2574120
- 20Falduto MT, Young AP, Hickson RC. Exercise inhibits glucocorticoid-induced glutamine synthetase expression in red skeletal muscles. Am J Physiol. 1992; 262(1): C214-C220. doi:10.1152/ajpcell.1992.262.1.C214
- 21Ahtikoski AM, Riso EM, Koskinen SOA, Risteli J, Takala TES. Regulation of type IV collagen gene expression and degradation in fast and slow muscles during dexamethasone treatment and exercise. Pflugers Arch. 2004; 448(1): 123-130. doi:10.1007/s00424-003-1226-5
- 22Seene T, Viru A. The catabolic effect of glucocorticoids on different types of skeletal muscle fibres and its dependence upon muscle activity and interaction with anabolic steroids. J Steroid Biochem. 1982; 16(2): 349-352. doi:10.1016/0022-4731(82)90190-x
- 23Nakago K, Senda M, Touno M, Takahara Y, Inoue H. Influence of exercise on muscle fibers in rats with steroid myopathy. Acta Med Okayama. 1999; 53(6): 265-270. doi:10.18926/AMO/31621
- 24Czerwinski SM, Kurowski TG, O'Neill TM, Hickson RC. Initiating regular exercise protects against muscle atrophy from glucocorticoids. J Appl Physiol. 1987; 63(4): 1504-1510. doi:10.1152/jappl.1987.63.4.1504
- 25Czerwinski SM, Zak R, Kurowski TT, Falduto MT, Hickson RC. Myosin heavy chain turnover and glucocorticoid deterrence by exercise in muscle. J Appl Physiol. 1989; 67(6): 2311-2315. doi:10.1152/jappl.1989.67.6.2311
- 26Fimbel S, Abdelmalki A, Mayet MH, et al. Exercise training fails to prevent glucocorticoid-induced muscle alterations in young growing rats. Pflugers Arch. 1993; 424(5–6): 369-376. doi:10.1007/bf00374896
- 27 Melnyk BM, Fineout-Overholt E. Evidence-based Practice in Nursing & Healthcare: A Guide to Best Practice. Fifth edition. Wolters Kluwer; 2023.
- 28Konagaya M, Bernard PA, Max SR. Blockade of glucocorticoid receptor binding and inhibition of dexamethasone-induced muscle atrophy in the rat by RU38486, a potent glucocorticoid antagonist. Endocrinology. 1986; 119(1): 375-380. doi:10.1210/endo-119-1-375
- 29Sun L, Trausch-Azar JS, Muglia LJ, Schwartz AL. Glucocorticoids differentially regulate degradation of MyoD and Id1 by N-terminal ubiquitination to promote muscle protein catabolism. Proc Natl Acad Sci U S A. 2008; 105(9): 3339-3344. doi:10.1073/pnas.0800165105
- 30Deval C, Mordier S, Obled C, et al. Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem J. 2001; 360(1): 143-150. doi:10.1042/0264-6021:3600143
- 31Schakman O, Kalista S, Barbé C, Loumaye A, Thissen JP. Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol. 2013; 45(10): 2163-2172. doi:10.1016/j.biocel.2013.05.036
- 32Ma K, Mallidis C, Artaza J, Taylor W, Gonzalez-Cadavid N, Bhasin S. Characterization of 5′-regulatory region of human myostatin gene: regulation by dexamethasone in vitro. Am J Physiol Endocrinol Metab. 2001; 281(6): E1128-E1136. doi:10.1152/ajpendo.2001.281.6.E1128
- 33Inder WJ, Jang C, Obeyesekere VR, Alford FP. Dexamethasone administration inhibits skeletal muscle expression of the androgen receptor and IGF-1–implications for steroid-induced myopathy. Clin Endocrinol (Oxf). 2010; 73(1): 126-132. doi:10.1111/j.1365-2265.2009.03683.x
- 34Schakman O, Gilson H, de Coninck V, et al. Insulin-like growth factor-I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoid-treated rats. Endocrinology. 2005; 146(4): 1789-1797. doi:10.1210/en.2004-1594
- 35Gilson H, Schakman O, Combaret L, et al. Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology. 2007; 148(1): 452-460. doi:10.1210/en.2006-0539
- 36Khaleeli AA, Edwards RH, Gohil K, et al. Corticosteroid myopathy: a clinical and pathological study. Clin Endocrinol (Oxf). 1983; 18(2): 155-166. doi:10.1111/j.1365-2265.1983.tb03198.x
- 37Minetto MA, Qaisar R, Agoni V, et al. Quantitative and qualitative adaptations of muscle fibers to glucocorticoids. Muscle Nerve. 2015; 52(4): 631-639. doi:10.1002/mus.24572
- 38Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. J Endocrinol. 2008; 197(1): 1-10. doi:10.1677/JOE-07-0606
- 39Johnson MA, Polgar J, Weightman D, Appleton D. Data on the distribution of fibre types in thirty-six human muscles. J Neurol Sci. 1973; 18(1): 111-129. doi:10.1016/0022-510X(73)90023-3
- 40Martucci MG, McIlduff CE, Shin C, et al. Quantitative ultrasound of muscle can detect corticosteroid effects. Clin Neurophysiol. 2019; 130(8): 1460-1464. doi:10.1016/j.clinph.2019.04.709
- 41Berr CM, Stieg MR, Deutschbein T, et al. Persistence of myopathy in Cushing's syndrome: evaluation of the German Cushing's registry. Eur J Endocrinol. 2017; 176(6): 737-746. doi:10.1530/EJE-16-0689
- 42Sturdza A, Millar B-A, Bana N, et al. The use and toxicity of steroids in the management of patients with brain metastases. Support Care Cancer. 2008; 16(9): 1041-1048. doi:10.1007/s00520-007-0395-8
- 43Aulakh R, Singh S. Strategies for minimizing corticosteroid toxicity: a review. Indian J Pediatr. 2008; 75(10): 1067-1073. doi:10.1007/s12098-008-0211-6
- 44Deshmukh CT. Minimizing side effects of systemic corticosteroids in children. Indian J Dermatol Venereol Leprol. 2007; 73(4): 218-221. doi:10.4103/0378-6323.33633
- 45Bowyer SL, LaMothe MP, Hollister JR. Steroid myopathy: incidence and detection in a population with asthma. J Allergy Clin Immunol. 1985; 76(2 Pt 1): 234-242. doi:10.1016/0091-6749(85)90708-0
- 46Dropcho EJ, Soong SJ. Steroid-induced weakness in patients with primary brain tumors. Neurology. 1991; 41(8): 1235-1239. doi:10.1212/wnl.41.8.1235
- 47Weissman DE, Dufer D, Vogel V, Abeloff MD. Corticosteroid toxicity in neuro-oncology patients. J Neurooncol. 1987; 5(2): 125-128. doi:10.1007/bf02571300
- 48Chalk JB, Ridgeway K, Brophy T, Yelland JD, Eadie MJ. Phenytoin impairs the bioavailability of dexamethasone in neurological and neurosurgical patients. J Neurol Neurosurg Psychiatr. 1984; 47(10): 1087-1090. doi:10.1136/jnnp.47.10.1087
- 49Ferrando AA, Stuart CA, Sheffield-Moore M, Wolfe RR. Inactivity amplifies the catabolic response of skeletal muscle to cortisol. J Clin Endocrinol Metab. 1999; 84(10): 3515-3521. doi:10.1210/jcem.84.10.6046
- 50Haran M, Schattner A, Kozak N, Mate A, Berrebi A, Shvidel L. Acute steroid myopathy: a highly overlooked entity. QJM. 2018; 111(5): 307-311. doi:10.1093/qjmed/hcy031
- 51Roth P, Happold C, Weller M. Corticosteroid use in neuro-oncology: an update. Neurooncol Pract. 2015; 2(1): 6-12. doi:10.1093/nop/npu029
- 52Ryken TC, McDermott M, Robinson PD, et al. The role of steroids in the management of brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol. 2010; 96(1): 103-114. doi:10.1007/s11060-009-0057-4
- 53Banks PD, Lasocki A, Lau PKH, Sandhu S, McArthur G, Shackleton M. Bevacizumab as a steroid-sparing agent during immunotherapy for melanoma brain metastases: a case series. Health Sci Rep. 2019; 2(3):e115. doi:10.1002/hsr2.115
- 54Recht L, Mechtler LL, Wong ET, O'Connor PC, Rodda BE. Steroid-sparing effect of corticorelin acetate in peritumoral cerebral edema is associated with improvement in steroid-induced myopathy. J Clin Oncol. 2013; 31(9): 1182-1187. doi:10.1200/JCO.2012.43.9455
- 55Hill L, Alousi A, Kebriaei P, Mehta R, Rezvani K, Shpall E. New and emerging therapies for acute and chronic graft versus host disease. Ther Adv Hematol. 2018; 9(1): 21-46. doi:10.1177/2040620717741860
- 56Malard F, Huang X-J, Sim JPY. Treatment and unmet needs in steroid-refractory acute graft-versus-host disease. Leukemia. 2020; 34(5): 1229-1240. doi:10.1038/s41375-020-0804-2
- 57Garnett C, Apperley JF, Pavlů J. Treatment and management of graft-versus-host disease: improving response and survival. Ther Adv Hematol. 2013; 4(6): 366-378. doi:10.1177/2040620713489842
- 58Lee HJ, Oran B, Saliba RM, et al. Steroid myopathy in patients with acute graft-versus-host disease treated with high-dose steroid therapy. Bone Marrow Transplant. 2006; 38(4): 299-303. doi:10.1038/sj.bmt.1705435
- 59Jagasia MH, Greinix HT, Arora M, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. The 2014 diagnosis and staging working group report. Biol Blood Marrow Transplant. 2015; 21(3): 389-401.e1. doi:10.1016/j.bbmt.2014.12.001
- 60New-Tolley J, Smith C, Koszyca B, et al. Inflammatory myopathies after allogeneic stem cell transplantation. Muscle Nerve. 2018; 58(6): 790-795. doi:10.1002/mus.26341
- 61Sakamoto K, Imamura T, Niwa F, et al. Dermatomyositis developed in a recipient of allogeneic BMT; the differentiation of chronic GVHD and autoimmune disease. Bone Marrow Transplant. 2012; 47(4): 603-604. doi:10.1038/bmt.2011.125
- 62Mushtaq T, Ahmed SF. The impact of corticosteroids on growth and bone health. Arch Dis Child. 2002; 87(2): 93-96. doi:10.1136/adc.87.2.93
- 63 Neonatal and Pediatric Pharmacology: Therapeutic principles in practice, 4th. Glucocorticoids. In: Sumner J Yaffe, Jacob V Aranda, eds. Neonatal and Pediatric Pharmacology: Therapeutic Principles in Practice. Lippincott Williams & Wilkins; 2011: 765–766.
- 64Mrakotsky CM, Silverman LB, Dahlberg SE, et al. Neurobehavioral side effects of corticosteroids during active treatment for acute lymphoblastic leukemia in children are age-dependent: report from Dana-Farber Cancer Institute ALL consortium protocol 00-01. Pediatr Blood Cancer. 2011; 57(3): 492-498. doi:10.1002/pbc.23060
- 65Taverna L, Tremolada M, Bonichini S, et al. Motor skill delays in pre-school children with leukemia one year after treatment: hematopoietic stem cell transplantation therapy as an important risk factor. PloS One. 2017; 12(10):e0186787. doi:10.1371/journal.pone.0186787
- 66Minetto MA, D'Angelo V, Arvat E, Kesari S. Diagnostic work-up in steroid myopathy. Endocrine. 2018; 60(2): 219-223. doi:10.1007/s12020-017-1472-5
- 67Minetto MA, Lanfranco F, Botter A, et al. Do muscle fiber conduction slowing and decreased levels of circulating muscle proteins represent sensitive markers of steroid myopathy? A pilot study in Cushing's disease. Eur J Endocrinol. 2011; 164(6): 985-993. doi:10.1530/EJE-10-1169
- 68Askari A, Vignos PJ, Moskowitz RW. Steroid myopathy in connective tissue disease. Am J Med. 1976; 61(4): 485-492. doi:10.1016/0002-9343(76)90327-2
- 69Elia M, Carter A, Bacon S, Winearls CG, Smith R. Clinical usefulness of urinary 3-methylhistidine excretion in indicating muscle protein breakdown. Br Med J (Clin Res Ed). 1981; 282(6261): 351-354. doi:10.1136/bmj.282.6261.351
- 70Djaldetti M, Gafter UZI, Fishman P. Ultrastructural observations in myopathy complicating Cushingʼs disease. Am J Med Sci. 1977; 273(3): 273-278. doi:10.1097/00000441-197705000-00004
- 71Minetto MA, Caresio C, D'Angelo V, et al. Diagnostic evaluation in steroid-induced myopathy: case report suggesting clinical utility of quantitative muscle ultrasonography. Endocr Res. 2018; 43(4): 235-245. doi:10.1080/07435800.2018.1461904
- 72Minetto MA, Botter A, Lanfranco F, Baldi M, Ghigo E, Arvat E. Muscle fiber conduction slowing and decreased levels of circulating muscle proteins after short-term dexamethasone administration in healthy subjects. J Clin Endocrinol Metab. 2010; 95(4): 1663-1671. doi:10.1210/jc.2009-2161
- 73Nawata T, Kubo M, Nomura T, et al. Change in muscle volume after steroid therapy in patients with myositis assessed using cross-sectional computed tomography. BMC Musculoskelet Disord. 2018; 19(1): 93. doi:10.1186/s12891-018-2008-8
- 74Crawford BAL, Liu PY, Kean MT, Bleasel JF, Handelsman DJ. Randomized placebo-controlled trial of androgen effects on muscle and bone in men requiring long-term systemic glucocorticoid treatment. J Clin Endocrinol Metab. 2003; 88(7): 3167-3176. doi:10.1210/jc.2002-021827
- 75Minetto MA, Caresio C, Salvi M, et al. Ultrasound-based detection of glucocorticoid-induced impairments of muscle mass and structure in Cushing's disease. J Endocrinol Invest. 2019; 42(7): 757-768. doi:10.1007/s40618-018-0979-9
- 76Faludi G, Gotlieb J, Meyers J. Factors influencing the development of steroid-induced myopathies. Ann N Y Acad Sci. 1966; 138(1): 62-72.
- 77Van Balkom RH, Dekhuijzen PN, Folgering HT, et al. Anabolic steroids in part reverse glucocorticoid-induced alterations in rat diaphragm. J Appl Physiol. 1998; 84(5): 1492-1499. doi:10.1152/jappl.1998.84.5.1492
- 78Ferrando AA, Sheffield-Moore M, Yeckel CW, et al. Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab. 2002; 282(3): E601-E607. doi:10.1152/ajpendo.00362.2001
- 79Gault EJ, Cole TJ, Casey S, et al. Effect of oxandrolone and timing of pubertal induction on final height in turner syndrome: final analysis of the UK randomised placebo-controlled trial. Arch Dis Child. 2021; 106(1): 74-76. doi:10.1136/archdischild-2019-317695
- 80Fox-Wheeler S, Heller L, Salata CM, et al. Evaluation of the effects of oxandrolone on malnourished HIV-positive pediatric patients. Pediatrics. 1999; 104(6):e73. doi:10.1542/peds.104.6.e73
- 81Reeves PT, Herndon DN, Tanksley JD, et al. Five-year outcomes after long-term oxandrolone administration in severely burned children: a randomized clinical trial. Shock. 2016; 45(4): 367-374. doi:10.1097/SHK.0000000000000517
- 82Salehpour S, Alipour P, Razzaghy-Azar M, et al. A double-blind, placebo-controlled comparison of letrozole to oxandrolone effects upon growth and puberty of children with constitutional delay of puberty and idiopathic short stature. Horm Res Paediatr. 2010; 74(6): 428-435. doi:10.1159/000315482
- 83Kreider RB, Kalman DS, Antonio J, et al. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017; 14: 18. doi:10.1186/s12970-017-0173-z
- 84Seene T, Kaasik P. Role of exercise therapy in prevention of decline in aging muscle function: glucocorticoid myopathy and unloading. J Aging Res. 2012; 2012:172492. doi:10.1155/2012/172492
- 85Xiao DY, Luo S, O'Brian K, et al. Impact of sarcopenia on treatment tolerance in United States veterans with diffuse large B-cell lymphoma treated with CHOP-based chemotherapy. Am J Hematol. 2016; 91(10): 1002-1007. doi:10.1002/ajh.24465