Achievement of 25.54% power conversion efficiency by optimization of current losses at the front side of silicon heterojunction solar cells
Tianwei Tang
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorCorresponding Author
Cao Yu
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Correspondence
Cao Yu, Suzhou Maxwell Technologies Co., Ltd., No. 1801 Pangjin Road, Wujiang Economic Development Zone, Suzhou, Jiangsu 215200, China.
Email: [email protected]
Search for more papers by this authorChen-Wei Peng
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorGangqiang Dong
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorChenran He
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorXiaochao Ran
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorHao Jiang
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorVince Allen
Sundrive Solar Pty., Ltd., Kirrawee, NSW, Australia
Search for more papers by this authorXinmin Cao
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorJian Zhou
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorTianwei Tang
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorCorresponding Author
Cao Yu
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Correspondence
Cao Yu, Suzhou Maxwell Technologies Co., Ltd., No. 1801 Pangjin Road, Wujiang Economic Development Zone, Suzhou, Jiangsu 215200, China.
Email: [email protected]
Search for more papers by this authorChen-Wei Peng
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorGangqiang Dong
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorChenran He
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorXiaochao Ran
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorHao Jiang
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorVince Allen
Sundrive Solar Pty., Ltd., Kirrawee, NSW, Australia
Search for more papers by this authorXinmin Cao
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorJian Zhou
Suzhou Maxwell Technologies Co., Ltd., Suzhou, Jiangsu, China
Search for more papers by this authorTianwei Tang and Cao Yu contributed equally.
Funding information: Australian Renewable Energy Agency (ARENA) as part of ARENA's Advancing Renewables Program; Carbon Emission Peak and Carbon Neutrality Special Fund of Jiangsu Province, Grant/Award Number: BA2022205
Abstract
Parasitic absorption in the front window layers of transparent conductive oxide (TCO) films and carrier selective collection layers and the optical shading losses from the metallic finger grid mainly limit the current generation in silicon heterojunction (SHJ) solar cells. In this work, we demonstrate an improved short-circuit current density (Jsc) of 40.24 mA/cm2 through a combination of novel window layers composed of transition metal doped indium oxide (IMO) and hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) films and Cu plating for SHJ solar cells. By introducing water vapor during direct current (DC) magnetron sputtering deposition process, IMO films show a large optical band gap (Eg) of about 3.88 eV and high mobility up to 83.2 cm2/V·s, while maintaining a low carrier concentration, which leads to high transparency and low near-infrared (NIR) free carrier absorption (FCA). In addition to its high deposition rate and crystalline volume fraction, we found that nc-SiOx:H films deposited by very high frequency (VHF) excited plasma-enhanced chemical vapor deposition (PECVD) show an excellent surface passivation quality, which not only improves the open circuit voltage (Voc) of SHJ cells but also increases the Jsc through improved carrier selective collection. The quantified Jsc breakdown analysis was performed to identify the room for improvement, and it showed that the front shading loss (about 1.32 mA/cm2) is the largest portion. By combining the benefits of these window layer enhancements with the further use of fine line width and conductivity of Cu plating, SHJ solar cells, with a Jsc improvement of 0.57 mA/cm2 and a certified efficiency of 25.54%, were achieved on a total area of 274.5 cm2 using in-house pilot production line equipment.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
pip3641-sup-0001-pip-22-184-File022.docxWord 2007 document , 1.8 MB |
Table S1. The confirmed I-V characterizations of recently high PCE HJT cells. Figure S1. The X-ray diffraction (XRD) measurement results of IMO and the corresponding FWMH (Full Width of Maximum Height) of diffraction peak around 30° using Lorentz fitting. Figure S2. Absorption of IMO films as a function of water vapor partial pressure of . For comparison, the data of reference ITO films is shown. The inset depicts the enlarged region of certain wavelengths. Figure S3. The de-convoluted Raman spectra of a-Si:H (left) and RF nc-SiOx:H films (right) with low crystalline volume fraction Fc. Figure S4. The series resistance of SHJ solar cells with RF and VHF nc-SiOx:H films, respectively. Figure S5. The details of microscopy image measurement results of screen-printed Ag paste and plated Cu measured by Zeta3D. Figure S6. SEM images of cross section of screen-printed Ag pastes. The right is the enlarged view of certain region. Figure S7. Photograph of the front (left) and rear (right) side of the SHJ solar cells (PCE of 25.54%) with stack of Cu plating, IMO and VHF nc-SiOx:H on front side. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Haschke J, Dupré O, Boccard M, Ballif C. Silicon heterojunction solar cells: recent technological development and practical aspects — from lab to industry. Sol Energy Mater Sol Cells. 2018; 187: 140-153. doi:10.1016/j.solmat.2018.07.018
- 2Cruz A, Ruske F, Eljarrat A, et al. Influence of silicon layers on the growth of ITO and AZO in silicon heterojunction solar cells. IEEE J Photovolt. 2020; 10(2): 703-709. doi:10.1109/JPHOTOV.2019.2957665
- 3Yan L, Huang S, Ren H, et al. Bifunctional CO2 plasma treatment at the i/p interface enhancing the performance of planar silicon heterojunction solar cells. Phys Status Solidi Rapid Res Lett. 2021; 15(12): 2-9. doi:10.1002/pssr.202100010
- 4Mazzarella L, Kirner S, Gabriel O, et al. Nanocrystalline silicon emitter optimization for Si-HJ solar cells: substrate selectivity and CO2 plasma treatment effect. Phys Status Solidi Appl Mater Sci. 2017; 214(2):1532958. doi:10.1002/pssa.201532958
- 5Wang J, Meng C, Zhao L, et al. Effect of residual water vapor on the performance of indium tin oxide film and silicon heterojunction solar cell. Sol Energy. 2020; 204: 720-725. doi:10.1016/j.solener.2020.04.086
- 6Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy. 2017; 2(5):17032. doi:10.1038/nenergy.2017.32
- 7Adachi D, Hernández JL, Yamamoto K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl Phys Lett. 2015; 107(23): 22-25. doi:10.1063/1.4937224
- 8Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X. Solar cell efficiency tables (version 59). Prog Photovolt Res Appl. 2022; 30(1): 3-12. doi:10.1002/pip.3506
- 9 Chinese solar cell production equipment maker Maxwell achieves ‘record’ 25.05% efficiency for M6/166mm heterojunction cell, certified by Germany's ISFH. Press release. 2021. Accessed May 31, 2021. https://taiyangnews.info/technology/25-05-record-efficiency-for-hjt-m6-solar-cell/
- 10 Huasun Energy declares 25.26% power conversion efficiency for 166mm wafer sized heterojunction solar cell, with ISFH certification. Press release. 2021. Accessed July 12, 2021. https://taiyangnews.info/technology/25-26-hjt-solar-cell-efficiency-for-huasun-energy/
- 11 Tested by ISFH Germany, Chinese heterojunction cell & module producer Huasun Energy reports 25.23% efficiency for 166mm wafer sized HJT cell. Press release. 2021. Accessed July 7, 2021. https://taiyangnews.info/technology/25-23-conversion-efficiency-for-huasuns-hjt-solar-cell/
- 12Ru X, Qu M, Wang J, et al. 25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers. Sol Energy Mater Sol Cells. 2020; 215:110643. doi:10.1016/j.solmat.2020.110643
- 13 ISFH confirms LONGi solar's cell efficiency claims of 25.21% for N-type TOPCon, 25.02% for P-type TOPCon & 25.26% for HJT. Press release. 2021. Accessed July 2, 2021. https://taiyangnews.info/technology/longi-claims-3-new-cell-conversion-efficiency-records/
- 14Taguchi M, Yano A, Tohoda S, et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J Photovolt. 2014; 4(1): 96-99. doi:10.1109/JPHOTOV.2013.2282737
- 15Dong G, Sang J, Peng CW, Liu F, Zhou Y, Yu C. Power conversion efficiency of 25.26% for silicon heterojunction solar cell with transition metal element doped indium oxide transparent conductive film as front electrode. Prog Photovolt. 2022; 30(9): 1136-1143. doi:10.1002/pip.3565
- 16Zhao Y, Mazzarella L, Procel P, et al. Doped hydrogenated nanocrystalline silicon oxide layers for high-efficiency c-Si heterojunction solar cells. Prog Photovolt Res Appl. 2020; 28(5): 425-435. doi:10.1002/pip.3256
- 17Yang Y, Liu W, Zhang L, et al. N-type nc-SiOx:H film enables efficient and stable silicon heterojunction solar cells in sodium environment. Mater Lett. 2022; 309:131360. doi:10.1016/j.matlet.2021.131360
- 18Lei C, Peng CW, Zhong J, et al. Phosphorus treatment to promote crystallinity of the microcrystalline silicon front contact layers for highly efficient heterojunction solar cells. Sol Energy Mater Sol Cells. 2020; 209:110439. doi:10.1016/j.solmat.2020.110439
- 19Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz SW. n-Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol Energy Mater Sol Cells. 2017; 173: 96-105. doi:10.1016/j.solmat.2017.05.042
- 20Green MA. The passivated emitter and rear cell (PERC): from conception to mass production. Sol Energy Mater Sol Cells. 2015; 143: 190-197. doi:10.1016/j.solmat.2015.06.055
- 21Senaud L-L, Christmann G, Descoeudres A, et al. Aluminium-doped zinc oxide rear reflectors for high-efficiency silicon heterojunction solar cells. IEEE J Photovolt. 2019; 9(5): 1217-1224. doi:10.1109/JPHOTOV.2019.2926860
- 22Koida T, Kondo M, Tsutsumi K, Sakaguchi A, Suzuki M, Fujiwara H. Hydrogen-doped In2O3 transparent conducting oxide films prepared by solid-phase crystallization method. J Appl Phys. 2010; 107(3):033514. doi:10.1063/1.3284960
- 23Koida T, Fujiwara H, Kondo M. Hydrogen-doped In2O3 as high-mobility transparent conductive oxide. Jpn J Appl Phys Part 2 Lett. 2007; 46: 25-28. doi:10.1143/JJAP.46.L685
- 24Barraud L, Holman ZC, Badel N, et al. Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells. Sol Energy Mater Sol Cells. 2013; 115: 151-156. doi:10.1016/j.solmat.2013.03.024
- 25Wan N, Wang T, Sun H, et al. Indium tin oxide thin films for silicon-based electro-luminescence devices prepared by electron beam evaporation method. J Non-Cryst Solids. 2010; 356(18–19): 911-916. doi:10.1016/j.jnoncrysol.2009.12.026
- 26Khusayfan NM, El-Nahass MM. Study of structure and electro-optical characteristics of indium tin oxide thin films. Adv Condens Matter Phys. 2013; 2013: 1-8. doi:10.1155/2013/408182
- 27Koida T, Fujiwara H, Kondo M. High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells. Sol Energy Mater Sol Cells. 2009; 93(6–7): 851-854. doi:10.1016/j.solmat.2008.09.047
- 28You A, Be MAY, In I. Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. 2005; 123: April 1985.
- 29Boccard M, Rodkey N, Holman ZC. High-mobility hydrogenated indium oxide without introducing water during sputtering. In: Energy Procedia. Vol. 92. Elsevier Ltd; 2016: 297-303. doi:10.1016/j.egypro.2016.07.083.
10.1016/j.egypro.2016.07.083 Google Scholar
- 30Koida T, Ueno Y, Shibata H. In2O3-based transparent conducting oxide films with high electron mobility fabricated at low process temperatures. Phys Status Solidi Appl Mater Sci. 2018; 215(7): 1-14, 1700506. doi:10.1002/pssa.201700506
- 31Walsh A, Catlow CRA. Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory. J Mater Chem. 2010; 20(46): 10438-10444. doi:10.1039/c0jm01816c
- 32Torkaman NM, Ganjkhanlou Y, Kazemzad M, Dabaghi HH, Keyanpour-Rad M. Crystallographic parameters and electro-optical constants in ITO thin films. Mater Charact. 2010; 61(3): 362-370. doi:10.1016/j.matchar.2009.12.020
- 33Farahamndjou M. The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation. Rev Mex Fis. 2013; 59(3): 205-207.
- 34Diniz ASAC. The effects of various annealing regimes on the microstructure and physical properties of ITO (In2O3:Sn) thin films deposited by electron beam evaporation for solar energy applications. Renew Energy. 2011; 36(4): 1153-1165. doi:10.1016/j.renene.2010.09.005
- 35Al-Kuhaili MF. Electrical conductivity enhancement of indium tin oxide (ITO) thin films reactively sputtered in a hydrogen plasma. J Mater Sci Mater Electron. 2020; 31(4): 2729-2740. doi:10.1007/s10854-019-02813-9
- 36Senthilkumar V, Vickraman P, Jayachandran M, Sanjeeviraja C. Structural and optical properties of indium tin oxide (ITO) thin films with different compositions prepared by electron beam evaporation. Vacuum. 2010; 84(6): 864-869. doi:10.1016/j.vacuum.2009.11.017
- 37Fallah HR, Ghasemi Varnamkhasti M, Vahid MJ. Substrate temperature effect on transparent heat reflecting nanocrystalline ITO films prepared by electron beam evaporation. Renew Energy. 2010; 35(7): 1527-1530. doi:10.1016/j.renene.2009.10.034
- 38Han C, Zhao Y, Mazzarella L, et al. Room-temperature sputtered tungsten-doped indium oxide for improved current in silicon heterojunction solar cells. Sol Energy Mater Sol Cells. 2021; 227:111082. doi:10.1016/j.solmat.2021.111082
- 39Yu J, Bian J, Duan W, et al. Tungsten doped indium oxide film: ready for bifacial copper metallization of silicon heterojunction solar cell. Sol Energy Mater Sol Cells. 2016; 144: 359-363. doi:10.1016/j.solmat.2015.09.033
- 40Meng F, Shi J, Shen L, et al. Characterization of transparent conductive oxide films and their effect on amorphous/crystalline silicon heterojunction solar cells. Jpn J Appl Phys. 2017; 56(4):04CS09. doi:10.7567/JJAP.56.04CS09
- 41Kobayashi E, Watabe Y, Yamamoto T, Yamada Y. Cerium oxide and hydrogen co-doped indium oxide films for high-efficiency silicon heterojunction solar cells. Sol Energy Mater Sol Cells. 2016; 149: 75-80. doi:10.1016/j.solmat.2016.01.005
- 42Yu C, Yang M, Zhang Y, et al. Development of high efficiency rear-emitter n-type silicon heterojunction solar cells. In: 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015. Institute of Electrical and Electronics Engineers Inc.; 2015. doi:10.1109/PVSC.2015.7356162.
10.1109/PVSC.2015.7356162 Google Scholar
- 43Morales-Vilches AB, Cruz A, Pingel S, et al. ITO-free silicon heterojunction solar cells with ZnO:Al/SiO2 front electrodes reaching a conversion efficiency of 23%. IEEE J Photovolt. 2019; 9(1): 34-39. doi:10.1109/JPHOTOV.2018.2873307
- 44Tan H, Babal P, Zeman M, Smets AHM. Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells. Sol Energy Mater Sol Cells. 2015; 132: 597-605. doi:10.1016/j.solmat.2014.10.020
- 45Grübel B, Cimiotti G, Schmiga C, et al. Progress of plated metallization for industrial bifacial TOPCon silicon solar cells. Prog Photovolt Res Appl. 2022; 30(6): 615-621. doi:10.1002/pip.3528
- 46Zhang Y, Cong R, Zhao W, et al. Improved hetero-interface passivation by microcrystalline silicon oxide emitter in silicon heterojunction solar cells. Sci Bull. 2016; 61(10): 787-793. doi:10.1007/s11434-016-1065-3
- 47Miyajima S, Sawamura M, Yamada A, Konagai M. Low temperature deposition of hydrogenated nanocrystalline cubic silicon carbide thin films by HWCVD and VHF-PECVD. In: Conf Rec 2006 IEEE 4th World Conf Photovolt Energy Conversion, WCPEC-4. Vol. 2; 2006: 1604-1607. doi:10.1109/WCPEC.2006.279793.
10.1109/WCPEC.2006.279793 Google Scholar
- 48Meier J, Kroll U, Vallat-Sauvain E, Spitznagel J, Graf U, Shah A. Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique. Sol Energy. 2004; 77(6): 983-993. doi:10.1016/j.solener.2004.08.026
- 49Finger F, Hapke P, Luysberg M, Carius R, Wagner H, Scheib M. Improvement of grain size and deposition rate of microcrystalline silicon by use of very high frequency glow discharge. Appl Phys Lett. 1994; 65(20): 2588-2590. doi:10.1063/1.112604
- 50Zhang Y, Kim M, Wang L, Verlinden P, Hallam B. Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: challenges and opportunities related to silver, indium and bismuth consumption. Energy Environ Sci. 2021; 14(11): 5587-5610. doi:10.1039/d1ee01814k
- 51Lachowicz A, Wyss P, Geissbühler J, Faes A, Champliaud J, Badel N, Ballif C, Despeisse M. Review on plating processes for silicon heterojunction cells. 2019;2019 (8th Workshop on Metallization and Interconnection). http://bifipv-workshop.com/index.php?id=amsterdam-2019-main
- 52Lachowicz A, Andreatta G, Blondiaux N, et al. Project Ameliz: patterning techniques for copper electroplated metallization on heterojunction solar cells. AIP Conf Proc. 2021; 2367:020010. doi:10.1063/5.0056227
- 53Lachowicz A, Christmann G, Allebe C, Nicolay S, Ballif C. Copper electroplated metallization for heterojunction cells with AZO. In: Conf Rec IEEE Photovolt Spec Conf 2020; 2020-June: 0258-0260. doi:10.1109/PVSC45281.2020.9300897.
10.1109/PVSC45281.2020.9300897 Google Scholar
- 54Ando M, Nishimura E, Onisawa KI, Minemura T. Effect of microstructures on nanocrystallite nucleation and growth in hydrogenated amorphous indium-tin-oxide films. J Appl Phys. 2003; 93(2): 1032-1038. doi:10.1063/1.1528298
- 55Koida T, Fujiwara H, Kondo M. Structural and electrical properties of hydrogen-doped In2O3 films fabricated by solid-phase crystallization. J Non-Cryst Solids. 2008; 354(19–25): 2805-2808. doi:10.1016/j.jnoncrysol.2007.09.076
- 56Tauc J, Menth A. States in the gap. J Non-Cryst Solids. 1972; 8–10(C): 569-585. doi:10.1016/0022-3093(72)90194-9
- 57Aydin E, de Bastiani M, Yang X, et al. Zr-doped indium oxide (IZRO) transparent electrodes for perovskite-based tandem solar cells. Adv Funct Mater. 2019; 29(25):1901741. doi:10.1002/adfm.201901741
- 58Chakraborty K, Das D. Structural studies on the microcrystallization of Si:H network developed by hot-wire CVD. Sol Energy Mater Sol Cells. 2006; 90(7–8): 849-863. doi:10.1016/j.solmat.2005.05.004
- 59Gabhale B, Borate H, Pandharkar S, et al. Effect of phosphine gas conditions on structural, optical and electrical properties of Nc-Si:H films deposited by Cat-CVD method. ES Mater Manuf. 2020; 52-59. doi:10.30919/esmm5f935
10.30919/esmm5f935 Google Scholar
- 60Wernerus H, Bivour M, Kroely L, Hermle M, Wolke W. Characterization of ultra-thin μc-Si:H films for silicon heterojunction solar cells. Energy Procedia. 2014; 55: 310-319. doi:10.1016/j.egypro.2014.08.092
- 61Kar D, Das D. Conducting wide band gap nc-Si/a-SiC:H films for window layers in nc-Si solar cells. J Mater Chem A. 2013; 1(46): 14744-14753. doi:10.1039/c3ta12878d
- 62Raha D, Das D. Hydrogen induced promotion of nanocrystallization from He-diluted SiH4 plasma. J Phys D Appl Phys. 2008; 41(8):085303. doi:10.1088/0022-3727/41/8/085303
- 63Sergeev O, Neumüller A, Shutsko I, Vehse M, Agert C. Doped microcrystalline silicon as front surface field layer in bifacial silicon heterojunction solar cells. Energy Procedia. 2017; 124: 371-378. doi:10.1016/j.egypro.2017.09.092
- 64Honsberg CB, Bowden SG. Collection Probability. 2019. page on www.pveducation.org
- 65Wong J, Duttagupta S, Stangl R, Hoex B, Aberle AG. A systematic loss analysis method for rear-passivated silicon solar cells. IEEE J Photovolt. 2015; 5(2): 619-626. doi:10.1109/JPHOTOV.2014.2388071
- 66Hossain MJ, Gregory G, Patel H, et al. Detailed performance loss analysis of silicon solar cells using high-throughput metrology methods. In: 2018 IEEE 7th World Conf Photovolt Energy Conversion, WCPEC 2018 — A Jt Conf 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC; 2018: 2214-2218. doi:10.1109/PVSC.2018.8547869.
10.1109/PVSC.2018.8547869 Google Scholar
- 67Schneller EJ, Ogutman K, Guo S, Schoenfeld WV, Davis KO. Crystalline silicon device loss analysis through spatially resolved quantum efficiency measurements. IEEE J Photovolt. 2017; 7(4): 957-965. doi:10.1109/JPHOTOV.2017.2689160
- 68 UNSW graduates' founded start-up SunDrive Solar achieves world's highest power conversion efficiency for commercial size silicon solar cell at 25.54%; 2021. Accessed September 10, 2021. https://taiyangnews.info/technology/25-54-efficiency-for-silicon-solar-cell/