High rate (~7 nm/s), atmospheric pressure deposition of ZnO front electrode for Cu(In,Ga)Se2 thin-film solar cells with efficiency beyond 15%
Corresponding Author
Andrea Illiberi
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Correspondence: Andrea Illiberi, TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands.
E-mail: [email protected]
Search for more papers by this authorFrank Grob
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorCorne Frijters
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorPaul Poodt
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorRam Ramachandra
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorHans Winands
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorMarcel Simor
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorPieter Jan Bolt
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorCorresponding Author
Andrea Illiberi
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Correspondence: Andrea Illiberi, TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands.
E-mail: [email protected]
Search for more papers by this authorFrank Grob
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorCorne Frijters
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorPaul Poodt
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorRam Ramachandra
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorHans Winands
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorMarcel Simor
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorPieter Jan Bolt
TNO, Thin Film Technology, PO Box 6235, 5600 HE Eindhoven, The Netherlands
Search for more papers by this authorABSTRACT
Undoped zinc oxide (ZnO) films have been grown on a moving glass substrate by plasma-enhanced chemical vapor deposition at atmospheric pressure. High deposition rates of ~7 nm/s are achieved at low temperature (200 °C) for a substrate speed from 20 to 60 mm/min. ZnO films are highly transparent in the visible range (90%). By a short (~minute) post-deposition exposure to near-ultraviolet light, a very low resistivity value of 1.6·10−3 Ω cm for undoped ZnO is achieved, which is independent on the film thickness in the range from 180 to 1200 nm. The photo-enhanced conductivity is stable in time at room temperature when ZnO is coated by an Al2O3 barrier film, deposited by the industrially scalable spatial atomic layer deposition technique. ZnO and Al2O3 films have been used as front electrode and barrier, respectively, in Cu(In,Ga)Se2 (CIGS) solar cells. An average efficiency of 15.4 ± 0.2% (15 cells) is obtained that is similar to the efficiency of CIGS reference cells in which sputtered ZnO:Al is used as electrode. Copyright © 2013 John Wiley & Sons, Ltd.
REFERENCES
- 1 Granqvist CG. Transparent conductors as solar energy materials: A panoramic review. Solar Energy Materials and Solar Cells 2007; 91: 1529–1598.
- 2 K Ellmer, A Klein, B Rech (eds). Transparent Conductive Zinc Oxide. Basics and Applications in Thin Film Solar Cells, Springer Series in Materials Science. Springer: Berlin Heidelberg New York, 2008; 104.
- 3 Groenen R, Loffler J, Sommeling PM, Linden JL, Harmes EAG, Schropp REI, van de Sanden MCM. Surface textured ZnO films for thin film solar cell applications by expanding thermal plasma CVD. Thin Solid Films 2001; 392: 226–230.
- 4 Raniero L, Ferreira I, Pimentel A, Goncalves A, Canhola P, Fortunato E, Martins R. Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings. Thin Solid Films 2006; 511: 295–298.
- 5 Hu J, Gordon RG. Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition. Journal of Applied Physics 1992; 71: 880–890.
- 6 Volintiru I, Creatore M, Kniknie BJ, Spee CIMA, van de Sanden MCM. Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition. Journal of Applied Physics 2007; 102: 043709–043717.
- 7 Sittinger V, Ruske F, Werner W, Szyszka B, Rech B, Hupkes J, Schope G, Stiebig H. ZnO:Al films deposited by in-line reactive AC magnetron sputtering for a-Si:H thin film solar cells. Thin Solid Films 2006; 496: 16–25.
- 8 Matsubara K, Fons P, Iwata K, Yamada A, Sakurai K, Tampo H, Niki S. ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications. Thin Solid Films 2003; 431: 369–372.
- 9 Major S, Banerjee A, Chopra KL. Highly transparent and conducting indium-doped zinc oxide films by spray pyrolysis. Thin Solid Films 1983; 108: 333–340.
- 10 Zhu MW, Gong J, Sun C, Xia JH, Jiang X. Investigation of correlation between the microstructure and electrical properties of sol-gel derived ZnO based thin films. Journal of Applied Physics 2008; 104: 073113–073119.
- 11 Lujala V, Skarp J, Tammenmaa M, Suntola T. Atomic layer epitaxy growth of doped zinc oxide thin films from organometals. Applied Surface Science 1984; 82: 34–40.
- 12 Illiberi A, Roozeboom F, Poodt P. Spatial Atomic Layer Deposition of Zinc Oxide Thin Films. ACS Applied Materials and Interfaces 2012; 4: 268–272.
- 13 Illiberi A, Kniknie B, van Deelen J, Steijvers HLAH, Habets D, Simons PJPM, Janssen AC, Beckers EHA. Industrial high-rate (~14 nm/s) deposition of low resistive and transparent ZnOx:Al films on glass. Solar Energy Materials and Solar Cells 2011; 95: 1955–1959.
- 14 Illiberi A, Simons PJPM, Kniknie B, van Deelen J, Theelen M, Zeman M, Tijssen M, Zijlmans W, Steijvers HLAH, Habets D, Janssen AC, Beckers EHA. Growth of ZnOx:Al by high-throughput CVD at atmospheric pressure. Journal of Crystal Growth 2012; 347: 56–61.
- 15 Illiberi A, Sharma K, Creatore M, van de Sanden MCM. Novel approach to thin film polycrystalline silicon on glass. Materials Letters 2009; 63: 1817–1819.
- 16 Hopfe V, Rogler D, Maeder G, Dani I, Landes K, Theophile E, Dzulko M, Rohrer C, Reichhold C. Linear extended ArcJet-CVD – a new PECVD approach for continuous wide area coating under atmospheric pressure. Chemical Vapor Deposition 2005; 11: 510–522.
- 17 Hopfe V, Sheel DW. Atmospheric-pressure plasmas for wide-area thin-film deposition and etching. Plasma Processes and Polymers 2007; 4: 253–265.
- 18 Yamada T, Miyake A, Kishimoto S, Makino H, Yamamoto N, Yamamoto T. Low resistivity Ga-doped ZnO thin films of less than 100-nm thickness prepared by ion plating with direct current arc discharge. Applied Physics Letters 2007; 91: 051915–051917.
- 19 Seomoon K, Lee J, Jang P, Jung C, Kim K-H. Synthesis and characterization of ZnO thin films deposited via PE-MOCVD. Current Applied Physics 2011; 11: S26–S29.
- 20 Ito Y, Sakai O, Tachibana K. Study of plasma enhanced chemical vapor deposition of ZnO films by non-thermal plasma jet at atmospheric pressure. Thin Solid Films 2010; 518: 3513–3516.
- 21 Chang K-M, Huang S-H, Wu C-J, Lin W-L, Chen W-C, Chi C-W, Lin J-W, Chang C-C. Transparent conductive indium-doped zinc oxide films prepared by atmospheric pressure plasma jet. Thin Solid Films 2011; 519: 5114–5117.
- 22 Barankin MD, Gonzalez E, Ladwig AM, Hicks RF. Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature. Solar Energy Materials and Solar Cells 2007; 91: 924–930.
- 23 Hsu Y-W, Li H-C, Yang Y-J, Hsu C-c. Deposition of zinc oxide thin films by an atmospheric pressure plasma jet. Thin Solid Films 2011; 519: 3095–3099.
- 24 Maruyama K, Tsumagari I, Kanezawa M, Gunji Y, Morita M, Kogoma M, Okazaki S. Preparation of ZnO films from Zn2+ aqueous mist using atmospheric pressure glow plasma. Journal of Materials Science Letters 2001; 20: 481–484.
- 25 Stauss S, Imanishi Y, Miyazoe H, Terashima K. Localized high-rate deposition of zinc oxide films at atmospheric pressure using inductively coupled microplasma. Thin Solid Films 2010; 518: 5391–5395.
- 26 Shishodia PK, Kim HJ, Wakahara A, Yoshida A, Shishodia G, Mehra RM. Plasma enhanced chemical vapor deposition of ZnO thin films. Journal of Crystal Growth 2006; 35: 2343–2346.
- 27 Suzaki Y, Eijma S, Shikama T, Azuma S, Tanaka O, Kajitani T, Koinuma H. Deposition of ZnO film using an open-air cold plasma generator. Thin Solid Films 2006; 506: 155–158.
- 28 Liu P, She G, Liao Z, Wang Y, Wang Z, Shi W, Zhang X, Lee S-T, Chen D. Observation of persistent photoconductance in single ZnO nanotube. Applied Physics Letters 2009; 94: 063120–063122.
- 29 Tzeng S-K, Hon M-H, Leu I-C. Persistent photoconductivity of solution-grown ZnO-based UV detectors. Journal of the Electrochemical Society 2011; 158: H1188–H1193.
- 30 Oga T, Izawa Y, Kuriyama K, Kushida K, Xu Q. Persistent photoconductivity in electron-irradiated ZnO bulk single crystals: Evaluation of the metastable conductive state by the dual light illumination. Solid State Communications 2011; 151: 1700–1703.
- 31 Seto JYW. The electrical properties of polycrystalline silicon films. Journal of Applied Physics 1975; 46: 5247–5254.
- 32 Lany S, Zunger A. Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Physical Review B 2005; 72: 035215–035227.
- 33 Janotti A, van De Walle CG. Hydrogen multicentre bonds. Nature Materials 2007; 6: 44–47.
- 34 Zhang SB, Wei S-H, Zunger A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Physical Review B 2001; 63: 075205–075211.
- 35 Ponomarev MV, Verheijen MA, Keuning W, van de Sanden MCM, Creatore M. Controlling the resistivity gradient in aluminum-doped zinc oxide grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics 2012; 112: 043708–043714.
- 36 Yin ZG, Zhang XW, Fu Z, Yang XL, Wu JL, Gong L, Chu PK. Persistent photoconductivity in ZnO nanostructures induced by surface oxygen vacancy. Physica Status Solidi RRL 2012; 6: 117–119.
- 37 Steinhauser J, Meyer S, Schwab M, Fay S, Ballif C. Humid environment stability of low pressure chemical vapor deposited boron doped zinc oxide used as transparent electrodes in thin film silicon solar cells. Thin Solid Films 2011; 520: 558–562.
- 38 Illiberi A, Scherpenborg R, Theelen M, Poodt P, Roozeboom F. On the environmental stability of ZnO thin films by Spatial ALD. Journal of Vacuum Science & Technology A 2013; 31: 061504–061510.
- 39 Groner MD, George SM, McLean RS, Carcia PF. Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Applied Physics Letters 2006; 88: 051907–051909.
- 40 Poodt P, Lankhorst A, Roozeboom F, Spee K, Maas D, Vermeer A. High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Advanced Materials 2010; 22: 3564–3567.
- 41 Poodt P, Knaapen R, Illiberi A, Roozeboom F, van Asten A. Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics. Journal of Vacuum Science and Technology A 2012; 30(1): 01A142-01A142-5.
- 42 Lim SJ, Kim J-M, Kim D, Lee C, Park J-S, Kim H. The effects of UV exposure on plasma-enhanced atomic layer deposition ZnO thin film transistor. Electrochemical and Solid-State Letters 2010; 13: H151–H154.