Polymer nanotherapeutics: A promising approach toward microglial inhibition in neurodegenerative diseases
Sanaz Keshavarz Shahbaz
Cellular and Molecular Research Center, Research Institute for prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
USERN Office, Qazvin University of Medical Science, Qazvin, Iran
Search for more papers by this authorKhadije Koushki
Department of Neurosurgery, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
Search for more papers by this authorSamaneh Keshavarz Hedayati
Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
Search for more papers by this authorAlice P. McCloskey
School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
Search for more papers by this authorCorresponding Author
Prashant Kesharwani
Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
Correspondence Yazdan Naderi, Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
Email: [email protected]
Amirhossein Sahebkar, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Email: [email protected]
Prashant Kesharwani, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Yazdan Naderi
Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
Correspondence Yazdan Naderi, Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
Email: [email protected]
Amirhossein Sahebkar, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Email: [email protected]
Prashant Kesharwani, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Amirhossein Sahebkar
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
Correspondence Yazdan Naderi, Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
Email: [email protected]
Amirhossein Sahebkar, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Email: [email protected]
Prashant Kesharwani, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
Email: [email protected]
Search for more papers by this authorSanaz Keshavarz Shahbaz
Cellular and Molecular Research Center, Research Institute for prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
USERN Office, Qazvin University of Medical Science, Qazvin, Iran
Search for more papers by this authorKhadije Koushki
Department of Neurosurgery, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
Search for more papers by this authorSamaneh Keshavarz Hedayati
Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
Search for more papers by this authorAlice P. McCloskey
School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
Search for more papers by this authorCorresponding Author
Prashant Kesharwani
Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
Correspondence Yazdan Naderi, Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
Email: [email protected]
Amirhossein Sahebkar, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Email: [email protected]
Prashant Kesharwani, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Yazdan Naderi
Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
Correspondence Yazdan Naderi, Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
Email: [email protected]
Amirhossein Sahebkar, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Email: [email protected]
Prashant Kesharwani, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Amirhossein Sahebkar
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
Correspondence Yazdan Naderi, Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
Email: [email protected]
Amirhossein Sahebkar, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Email: [email protected]
Prashant Kesharwani, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
Email: [email protected]
Search for more papers by this authorAbstract
Nanoparticles (NPs) that target multiple transport mechanisms facilitate targeted delivery of active therapeutic agents to the central nervous system (CNS) and improve therapeutic transport and efficacy across the blood-brain barrier (BBB). CNS nanotherapeutics mostly target neurons and endothelial cells, however, microglial immune cells are the first line of defense against neuronal damage and brain infections. Through triggering release of inflammatory cytokines, chemokines and proteases, microglia can however precipitate neurological damage—a significant factor in neurodegenerative diseases. Thus, microglial inhibitory agents are attracting much attention among those researching and developing novel treatments for neurodegenerative disorders. The most established inhibitors of microglia investigated to date are resveratrol, curcumin, quercetin, and minocycline. Thus, there is great interest in developing novel agents that can bypass or easily cross the BBB. One such approach is the use of modified-nanocarriers as, or for, delivery of, therapeutic agents to the brain and wider CNS. For microglial inhibition, polymeric NPs are the preferred vehicles for choice. Here, we summarize the immunologic and neuroinflammatory role of microglia, established microglia inhibitor agents, challenges of CNS drug delivery, and the nanotherapeutics explored for microglia inhibition to date. We also discuss applications of the currently considered “most useful” polymeric NPs for microglial-inhibitor drug delivery in CNS-related diseases.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
No primary data was generated in this review article.
REFERENCES
- 1Lenz KM, Nelson LH. Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Front Immunol. 2018; 13: 698.
10.3389/fimmu.2018.00698 Google Scholar
- 2Norris GT, Kipnis J. Immune cells and CNS physiology: microglia and beyond. J Exp Med. 2019; 216(1): 60-70.
- 3Angelova DM, Brown DR. Microglia and the aging brain: are senescent microglia the key to neurodegeneration? J Neurochem. 2019; 151(6): 676-688.
- 4Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional microglia–neuron communication in health and disease. Front Cell Neurosci. 2018; 12: 323.
- 5Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005; 308(5726): 1314-1318.
- 6Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci. 2005; 8(6): 752-758.
- 7Parkhurst CN, Yang G, Ninan I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013; 155(7): 1596-1609.
- 8Schafer DP, Stevens B. Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr Opin Neurobiol. 2013; 23(6): 1034-1040.
- 9Sierra A, Encinas JM, Deudero JJP, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010; 7(4): 483-495.
- 10Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett. 2011; 585(23): 3798-3805.
- 11Ferreira SA, Romero-Ramos M. Microglia response during parkinson's disease: alpha-synuclein intervention. Front Cell Neurosci. 2018; 12: 247.
- 12Subramaniam SR, Federoff HJ. Targeting microglial activation states as a therapeutic avenue in Parkinson's disease. Front Aging Neurosci. 2017; 9(17): 176.
- 13Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. 2013; 35(5): 601-612.
- 14Zhao N, Francis NL, Calvelli HR, Moghe PV. Microglia-targeting nanotherapeutics for neurodegenerative diseases. APL Bioeg. 2020; 4(3):030902.
- 15Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017; 79: 619-643.
- 16Kwon HS, Koh S-H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020; 9(1): 42.
- 17Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 2012; 87(1): 10-20.
- 18Perry VH, Nicoll JAR, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010; 6(4): 193-201.
- 19Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer's disease. J Cell Biol. 2018; 217(2): 459-472.
- 20Zhong L, Wang Z, Wang D, et al. Amyloid-beta modulates microglial responses by binding to the triggering receptor expressed on myeloid cells 2 (TREM2). Mol Neurodegener. 2018; 13(1): 15.
- 21Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer's disease pathogenesis. J Neuroinflammation. 2014; 11(1): 48.
- 22Sita G, Graziosi A, Hrelia P, Morroni F. NLRP3 and infections: β-amyloid in inflammasome beyond neurodegeneration. Int J Mol Sci. 2021; 22(13): 6984.
- 23Panza F, Lozupone M, Solfrizzi V, et al. BACE inhibitors in clinical development for the treatment of Alzheimer's disease. Expert Rev Neurother. 2018; 18(11): 847-857.
- 24Venegas C, Kumar S, Franklin BS, et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease. Nature. 2017; 552(7685): 355-361.
- 25Naderi Y, Parvardeh S, Moini Zanjani T, Sabetkasaei M. Neuroprotective effect of paroxetine on memory deficit induced by cerebral ischemia after transient bilateral occlusion of common carotid arteries in rat. Iran J Pharm Res. 2018; 17(1): 215-224.
- 26Zhou M, Wang CM, Yang W-L, Wang P. Microglial CD14 activated by iNOS contributes to neuroinflammation in cerebral ischemia. Brain Res. 2013; 1506: 105-114.
- 27Yenari MA, Kauppinen TM, Swanson RA. Microglial activation in stroke: therapeutic targets. Neurotherapeutics. 2010; 7(4): 378-391.
- 28Iadecola C, Gorelick PB. The Janus face of cyclooxygenase-2 in ischemic stroke: shifting toward downstream targets. Stroke. 2005; 36(2): 182-185.
- 29Nagayama M, Niwa K, Nagayama T, Ross ME, Iadecola C. The cyclooxygenase-2 inhibitor NS-398 ameliorates ischemic brain injury in wild-type mice but not in mice with deletion of the inducible nitric oxide synthase gene. J Cereb Blood Flow Metab. 1999; 19(11): 1213-1219.
- 30Ho MS. Microglia in Parkinson's disease. Neuroglia Neurodegener Dis. 2019; 1175: 335-353.
- 31Daniel G, Musso A, Tsika E, et al. α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9). Neurobiol Dis. 2015; 73: 229-243.
- 32Wang B, Wang X, Yang S, et al. Neuroprotective effects of nitidine in Parkinson's disease models through inhibiting microglia activation: role of the Jak2–Stat3 pathway. RSC Adv. 2016; 6(75): 71328-71337.
- 33Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ. Synuclein activates microglia in a model of Parkinson's disease. Neurobiol Aging. 2008; 29(11): 1690-1701.
- 34Liu M, Bing G. Lipopolysaccharide animal models for Parkinson's disease. Parkinson's Dis. 2011; 2011: 1-7.
- 35Chao Y, Wong SC, Tan EK. Evidence of inflammatory system involvement in Parkinson's disease. BioMed Res Int. 2014; 2014: 1-9.
- 36Hamza RZ, El-Shenawy NS. Anti-inflammatory and antioxidant role of resveratrol on nicotine-induced lung changes in male rats. Toxicol Rep. 2017; 4: 399-407.
- 37Farkhondeh T, Folgado SL, Pourbagher-Shahri AM, Ashrafizadeh M, Samarghandian S. The therapeutic effect of resveratrol: focusing on the Nrf2 signaling pathway. Biomed Pharmacother. 2020; 127:110234.
- 38Omraninava M, Razi B, Aslani S, Imani D, Jamialahmadi T, Sahebkar A. Effect of resveratrol on inflammatory cytokines: a meta-analysis of randomized controlled trials. Eur J Pharmacol. 2021; 908:174380.
- 39Parsamanesh N, Asghari A, Sardari S, et al. Resveratrol and endothelial function: a literature review. Pharmacol Res. 2021; 170:105725.
- 40de Ligt M, Bergman M, Fuentes RM, et al. No effect of resveratrol supplementation after 6 months on insulin sensitivity in overweight adults: a randomized trial. Am J Clin Nutr. 2020; 112(4): 1029-1038.
- 41Sahebkar A. Effects of resveratrol supplementation on plasma lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr Res. 2013; 71(12): 822-835.
10.1111/nure.12081 Google Scholar
- 42Sahebkar A, Serban C, Ursoniu S, et al. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors—results from a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol. 2015; 189(1): 47-55.
- 43Lei JR, Tu XK, Wang Y, Tu DW, Shi SS. Resveratrol downregulates the TLR4 signaling pathway to reduce brain damage in a rat model of focal cerebral ischemia. Exp Ther Med. 2019; 17(4): 3215-3221.
- 44Su C-F, Jiang L, Zhang X-W, Iyaswamy A, Li M. Resveratrol in rodent models of Parkinson's disease: a systematic review of experimental studies. Front Pharmacol. 2021; 12: 879.
10.3389/fphar.2021.644219 Google Scholar
- 45Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H. Research progress on Alzheimer's disease and resveratrol. Neurochem Res. 2020; 45(5): 989-1006.
- 46Zhong L-M, Zong Y, Sun L, et al. Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One. 2012; 7(2):e32195.
- 47Cai JC, Liu W, Lu F, et al Resveratrol attenuates neurological deficit and neuroinflammation following intracerebral hemorrhage. Exp Ther Med. 2018; 15(5): 4131-4138.
- 48Chang CY, Choi D-K, Lee DK, Hong YJ, Park EJ. Resveratrol confers protection against rotenone-induced neurotoxicity by modulating myeloperoxidase levels in glial cells. PLoS One. 2013; 8(4):e60654.
- 49Sun W, Li H, Shen Y, Xiao H. Resveratrol attenuates rotenone-induced inflammation and oxidative stress via STAT1 and Nrf2/Keap1/SLC7A11 pathway in a microglia cell line. Pathol Res Pract. 2021; 225:153576.
- 50Zhao H, Alam A, Chen Q, et al. The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br J Anaesth. 2017; 118(4): 504-516.
- 51Yang Y, Hu L, Xia Y, et al. Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK. J Neuroinflammation. 2016; 13(1): 84.
- 52Ghazavi H, Shirzad S, Forouzanfar F, Sahab Negah S, Riyahi Rad M, Vafaee F. The role of resveratrol as a natural modulator in glia activation in experimental models of stroke. Avicenna J Phytomed. 2020; 10(6): 557-573.
- 53Ma S, Fan L, Li J, Zhang B, Yan Z. Resveratrol promoted the M2 polarization of microglia and reduced neuroinflammation after cerebral ischemia by inhibiting miR-155. Int J Neurosci. 2020; 130(8): 817-825.
- 54Lofrumento DD, Nicolardi G, Cianciulli A, et al. Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson's-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun. 2014; 20(3): 249-260.
- 55Feng L, Zhang L. Resveratrol suppresses Aβ-induced microglial activation through the TXNIP/TRX/NLRP3 signaling pathway. DNA Cell Biol. 2019; 38(8): 874-879.
- 56Keihanian F, Saeidinia A, Bagheri RK, Johnston TP, Sahebkar A. Curcumin, hemostasis, thrombosis, and coagulation. J Cell Physiol. 2018; 233(6): 4497-4511.
- 57Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactor. 2020; 46(1): 5-20. doi:10.1002/biof.1566
- 58Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H. Targeting regulatory T cells by curcumin: a potential for cancer immunotherapy. Pharmacol Res. 2019; 147:104353. doi:10.1016/j.phrs.2019.104353
- 59Fereydouni N, Darroudi M, Movaffagh J, et al. Curcumin nanofibers for the purpose of wound healing. J Cell Physiol. 2019; 234(5): 5537-5554. doi:10.1002/jcp.27362
- 60Fu YS, Chen TH, Weng L, Huang L, Lai D, Weng CF. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed Pharmacother. 2021; 141:111888.
- 61Heidari H, Bagherniya M, Majeed M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Curcumin-piperine co-supplementation and human health: a comprehensive review of preclinical and clinical studies. Phytother Res. 2023; 37(4): 1462-1487. doi:10.1002/ptr.7737
- 62Cicero AFG, Sahebkar A, Fogacci F, Bove M, Giovannini M, Borghi C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: a double-blind, placebo-controlled clinical trial. Eur J Nutr. 2020; 59(2): 477-483.
- 63Marjaneh RM, Rahmani F, Hassanian SM, et al. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol. 2018; 233(10): 6785-6798.
- 64Panahi Y, Fazlolahzadeh O, Atkin SL, et al. Evidence of curcumin and curcumin analogue effects in skin diseases: a narrative review. J Cell Physiol. 2019; 234(2): 1165-1178.
- 65White CM, Pasupuleti V, Roman YM, Li Y, Hernandez AV. Oral turmeric/curcumin effects on inflammatory markers in chronic inflammatory diseases: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2019; 146:104280.
- 66Saberi-Karimian M, Keshvari M, Ghayour-Mobarhan M, et al. Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Complement Ther Med. 2020; 49:102322. doi:10.1016/j.ctim.2020.102322
- 67Kahkhaie KR, Mirhosseini A, Aliabadi A, et al. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology. 2019; 27(5): 885-900.
- 68Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem. 2019; 66: 1-16.
- 69Yu Y, Shen Q, Lai Y, et al. Anti-inflammatory effects of curcumin in microglial cells. Front Pharmacol. 2018; 9: 386.
- 70Akaishi T, Yamamoto S, Abe K. The synthetic curcumin derivative CNB-001 attenuates thrombin-stimulated microglial inflammation by inhibiting the ERK and p38 MAPK pathways. Biol Pharm Bull. 2020; 43(1): 138-144.
- 71Wang Y, Luo J, Li S-Y. Nano-curcumin simultaneously protects the blood–brain barrier and reduces M1 microglial activation during cerebral ischemia–reperfusion injury. ACS Appl Mater Interfaces. 2019; 11(4): 3763-3770.
- 72Tripanichkul W, Jaroensuppaperch EO. Ameliorating effects of curcumin on 6-OHDA-induced dopaminergic denervation, glial response, and SOD1 reduction in the striatum of hemiparkinsonian mice. Eur Rev Med Pharmacol Sci. 2013; 17(10): 1360-1368.
- 73He W, Yuan K, Ji B, Han Y, Li J. Protective effects of curcumin against neuroinflammation induced by Aβ25-35 in primary rat microglia: modulation of high-mobility group box 1, toll-like receptor 4 and receptor for advanced glycation end products expression. Ann Transl Med. 2020; 8(4): 88.
- 74Han Y, Chen R, Lin Q, et al. Curcumin improves memory deficits by inhibiting HMGB1-RAGE/TLR4-NF-κB signalling pathway in APPswe/PS1dE9 transgenic mice hippocampus. J Cell Mol Med. 2021; 25(18): 8947-8956.
- 75Anand David A, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Phcog Rev. 2016; 10(20): 84.
10.4103/0973-7847.194044 Google Scholar
- 76Khan A, Ali T, Rehman SU, et al. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front Pharmacol. 2018; 9: 1383.
- 77Nazif NN, Khosravi M, Ahmadi R, Bananej M, Ahmad M. Neuroprotection effect of quercetin on TNF-α levels and gene expression of caspase 3 in MPTP-induced male NMRI mice. Iran Red Crescent Med J. 2019; 21(12): 1-7.
- 78Singh S, Jamwal S, Kumar P. Neuroprotective potential of Quercetin in combination with piperine against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurotoxicity. Neural Regen Res. 2017; 12(7): 1137.
- 79Bournival J, Plouffe M, Renaud J, Provencher C, Martinoli M-G. Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system. Oxid Med Cell Longevity. 2012; 2012: 1-11.
- 80Vargas-Restrepo F, Sabogal-Guáqueta AM, Cardona-Gómez GP. Quercetin ameliorates inflammation in CA1 hippocampal region in aged triple transgenic Alzheimer's disease mice model. Biomédica. 2018; 38: 62-69.
- 81Song J, Du G, Wu H, et al. RETRACTED: protective effects of quercetin on traumatic brain injury induced inflammation and oxidative stress in cortex through activating Nrf2/HO-1 pathway. Restor Neurol Neurosci. 2021; 39(1): 73-84.
- 82Naderi Y, Sabetkasaei M, Parvardeh S, Moini Zanjani T. Neuroprotective effects of pretreatment with minocycline on memory impairment following cerebral ischemia in rats. Behav Pharmacol. 2017; 28(2): 214-222.
- 83Naderi Y, Sabetkasaei M, Parvardeh S, Zanjani TM. Neuroprotective effect of minocycline on cognitive impairments induced by transient cerebral ischemia/reperfusion through its anti-inflammatory and anti-oxidant properties in male rat. Brain Res Bull. 2017; 131: 207-213.
- 84Yrjänheikki J, Tikka T, Keinänen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci. 1999; 96(23): 13496-13500.
- 85Kobayashi K, Imagama S, Ohgomori T, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 2013; 4(3):e525.
- 86Cankaya S, Cankaya B, Kilic U, Kilic E, Yulug B. The therapeutic role of minocycline in Parkinson's disease. Drugs Context. 2019; 8:212553.
- 87Romero-Miguel D, Lamanna-Rama N, Casquero-Veiga M, Gómez-Rangel V, Desco M, Soto-Montenegro ML. Minocycline in neurodegenerative and psychiatric diseases: an update. Eur J Neurol. 2021; 28(3): 1056-1081.
- 88Familian A, Boshuizen RS, Eikelenboom P, Veerhuis R. Inhibitory effect of minocycline on amyloid β fibril formation and human microglial activation. GLIA. 2006; 53(3): 233-240.
- 89Tikka T, Fiebich BL, Goldsteins G, Keinänen R, Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci. 2001; 21(8): 2580-2588.
- 90Henry CJ, Huang Y, Wynne A, et al. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation. 2008; 5(1): 15.
- 91Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID. Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC) α/βII. J Biol Chem. 2007; 282(20): 15208-15216.
- 92Shultz R, Zhong Y. Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res. 2017; 12(5): 702.
- 93Ulgen O, B. G. Field M, W. Qureshi R, et al. The role of minocycline in ischemia-reperfusion injury: a comprehensive review of an old drug with new implications. Recent Patents Cardiovasc Drug Discov. 2011; 6(2): 123-132.
- 94Constantinides A, de Vries R, van Leeuwen JJJ, et al. Simvastatin but not bezafibrate decreases plasma lipoprotein-associated phospholipase A2 mass in type 2 diabetes mellitus: relevance of high sensitive C-reactive protein, lipoprotein profile and low-density lipoprotein (LDL) electronegativity. Eur J Intern Med. 2012; 23(7): 633-638.
- 95Banach M, Reiner Z, Cicero A, et al. 2022: the year in cardiovascular disease—the year of upfront lipid lowering combination therapy. Arch Med Sci. 2022; 18(6): 1429-1434.
- 96Zhou Q, Liao J. Statins and cardiovascular diseases: from cholesterol lowering to pleiotropy. Curr Pharm Des. 2009; 15(5): 467-478.
- 97Amin F, Fathi F, Reiner Ž, Banach M, Sahebkar A. The role of statins in lung cancer. Arch Med Sci. 2022; 18(1): 141-152.
- 98Kouhpeikar H, Delbari Z, Sathyapalan T, Simental-Mendía LE, Jamialahmadi T, Sahebkar A. The effect of statins through mast cells in the pathophysiology of atherosclerosis: a review. Curr Atheroscler Rep. 2020; 22(5): 19. doi:10.1007/s11883-020-00837-9
- 99Bahrami A, Parsamanesh N, Atkin SL, Banach M, Sahebkar A. Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacol Res. 2018; 135: 230-238.
- 100Bland AR, Payne FM, Ashton JC, Jamialahmadi T, Sahebkar A. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury. Pharmacol Res. 2022; 175:105986.
- 101Ferretti G, Bacchetti T, Sahebkar A. Effect of statin therapy on paraoxonase-1 status: a systematic review and meta-analysis of 25 clinical trials. Prog Lipid Res. 2015; 60: 50-73.
- 102Kandelouei T, Abbasifard M, Imani D, et al. Effect of statins on serum level of hs-CRP and CRP in patients with cardiovascular diseases: a systematic review and meta-analysis of randomized controlled trials. Mediators Inflamm. 2022; 2022: 1-20.
- 103Koushki K, Shahbaz SK, Mashayekhi K, et al. Anti-inflammatory action of statins in cardiovascular disease: the role of inflammasome and toll-like receptor pathways. Clin Rev Allergy Immunol. 2021; 60(2): 175-199.
- 104Sahebkar A, Kotani K, Serban C, et al. Statin therapy reduces plasma endothelin-1 concentrations: a meta-analysis of 15 randomized controlled trials. Atherosclerosis. 2015; 241(2): 433-442.
- 105Sahebkar A, Serban C, Mikhailidis D, et al. Association between statin use and plasma d-dimer levels: a systematic review and meta-analysis of randomised controlled trials. Thromb Haemost. 2015; 114(3): 546-557.
- 106Mollazadeh H, Tavana E, Fanni G, et al. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 2021; 12(2): 237-251. doi:10.1002/jcsm.12654
- 107Sahebkar A, Kiaie N, Gorabi AM, et al. A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog Lipid Res. 2021; 84:101127. doi:10.1016/j.plipres.2021.101127
- 108Shakour N, Ruscica M, Hadizadeh F, et al. Statins and C-reactive protein: in silico evidence on direct interaction. Arch Med Sci. 2020; 16(6): 1432-1439. doi:10.5114/aoms.2020.100304
- 109Chamani S, Liberale L, Mobasheri L, et al. The role of statins in the differentiation and function of bone cells. Eur J Clin Invest. 2021; 51(7):e13534. doi:10.1111/eci.13534
- 110Serban C, Sahebkar A, Ursoniu S, et al. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci Rep. 2015; 5: 9902.
- 111Bytyçi I, Penson PE, Mikhailidis DP, et al. Prevalence of statin intolerance: a meta-analysis. Eur Heart J. 2022; 43(34): 3213-3223.
- 112Ward NC, Watts GF, Eckel RH. Statin toxicity. Circ Res. 2019; 124(2): 328-350.
- 113Banach M, Serban C, Ursoniu S, et al. Statin therapy and plasma coenzyme Q10 concentrations—a systematic review and meta-analysis of placebo-controlled trials. Pharmacol Res. 2015; 99: 329-336.
- 114Sirtori CR. The pharmacology of statins. Pharmacol Res. 2014; 88: 3-11.
- 115Bagheri H, Ghasemi F, Barreto GE, Sathyapalan T, Jamialahmadi T, Sahebkar A. The effects of statins on microglial cells to protect against neurodegenerative disorders: a mechanistic review. Biofactors. 2020; 46(3): 309-325.
- 116Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev. 2012; 64(7): 701-705.
- 117Peptu CA, Ochiuz L, Alupei L, Peptu C, Popa M. Carbohydrate based nanoparticles for drug delivery across biological barriers. J Biomed Nanotechnol. 2014; 10(9): 2107-2148.
- 118Cramer S, Rempe R, Galla H-J. Exploiting the properties of biomolecules for brain targeting of nanoparticulate systems. Curr Med Chem. 2012; 19(19): 3163-3187.
- 119Ansari R, Sadati SM, Mozafari N, Ashrafi H, Azadi A. Carbohydrate polymer-based nanoparticle application in drug delivery for CNS-related disorders. Eur Polym J. 2020; 128:109607.
- 120Hwang SR, Kim K. Nano-enabled delivery systems across the blood–brain barrier. Arch Pharm Res. 2014; 37(1): 24-30.
- 121Matsuhisa K, Kondoh M, Takahashi A, Yagi K. Tight junction modulator and drug delivery. Expert Opin Drug Delivery. 2009; 6(5): 509-515.
- 122Tomitaka A, Kaushik A, Kevadiya BD, et al. Surface-engineered multimodal magnetic nanoparticles to manage CNS diseases. Drug Discovery Today. 2019; 24(3): 873-882.
- 123Bors LA, Erdő F. Overcoming the blood–brain barrier. challenges and tricks for CNS drug delivery. Sci Pharm. 2019; 87(1): 6.
- 124Vlieghe P, Khrestchatisky M. Peptide-based vectors for blood–brain barrier targeting and delivery of drugs to the central nervous system. Ther Delivery. 2010; 1(4): 489-494.
- 125Banks WA, Greig NH. Small molecules as central nervous system therapeutics: old challenges, new directions, and a philosophic divide. Future Sci. 2019; 11(6): 489-493.
- 126Tajes M, Ramos-Fernández E, Weng-Jiang X, et al. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol. 2014; 31(5): 152-167.
- 127Mikitsh JL, Chacko A-M. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Medicin Chem. 2014; 6: 11-24.
- 128Guarnieri D, Muscetti O, Netti PA. A Method for Evaluating Nanoparticle Transport Through the Blood–Brain Barrier in Vitro. Drug delivery system: Springer; 2014: 185-199.
10.1007/978-1-4939-0363-4_12 Google Scholar
- 129Pardridge WM. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci. 2020; 11: 373.
- 130Pardridge WM. Delivery of biologics across the blood–brain barrier with molecular Trojan horse technology. BioDrugs. 2017; 31(6): 503-519.
- 131Siegal T. Which drug or drug delivery system can change clinical practice for brain tumor therapy? Neuro-Oncol. 2013; 15(6): 656-669.
- 132Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater. 2019; 10(1): 4.
- 133Bari NK, Fazil M, Hassan MQ, et al. Brain delivery of buspirone hydrochloride chitosan nanoparticles for the treatment of general anxiety disorder. Int J Biiol Macromol. 2015; 81: 49-59.
- 134Kim J-Y, Choi WI, Kim YH, Tae G. Brain-targeted delivery of protein using chitosan-and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials. 2013; 34(4): 1170-1178.
- 135Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020; 25(9): 2193.
- 136Khan AR, Yang X, Fu M, Zhai G. Recent progress of drug nanoformulations targeting to brain. J Control Release. 2018; 291: 37-64.
- 137Comoglu T, Arisoy S, Akkus Z. Nanocarriers for effective brain drug delivery. Curr Top Med Chem. 2017; 17(13): 1490-1506.
- 138Vickers NJ. Animal communication: when i'm calling you, will you answer too? Curr Biol. 2017; 27(14): R713-R715.
- 139Banks WA. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016; 15(4): 275-292.
- 140Mina E, van Roon-Mom W, Hettne K, et al. Common disease signatures from gene expression analysis in Huntington's disease human blood and brain. Orphanet J Rare Dis. 2016; 11(1): 97.
- 141Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018; 30(23):1706759.
- 142El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano. 2018; 12(11): 10636-10664.
- 143Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010; 9(8): 615-627.
- 144Zhu H, Chen H, Zeng X, et al. Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials. 2014; 35(7): 2391-2400.
- 145Tiwari G, Tiwari R, Bannerjee S, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012; 2(1): 2.
- 146Gao H, Qian J, Cao S, et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials. 2012; 33(20): 5115-5123.
- 147Feng Q, Shen Y, Fu Y, et al. Self-assembly of gold nanoparticles shows microenvironment-mediated dynamic switching and enhanced brain tumor targeting. Theranostics. 2017; 7(7): 1875-1889.
- 148Zhu Y, Feijen J, Zhong Z. Dual-targeted nanomedicines for enhanced tumor treatment. Nano Today. 2018; 18: 65-85.
- 149Dong X. Current strategies for brain drug delivery. Theranostics. 2018; 8: 1481-1493.
- 150Chen WH, Luo GF, Zhang XZ. Recent advances in subcellular targeted cancer therapy based on functional materials. Adv Mater. 2019; 31(3):1802725.
- 151Zhou L, Wu Y, Meng X, et al. Dye-anchored MnO nanoparticles targeting tumor and inducing enhanced phototherapy effect via mitochondria-mediated pathway. Small. 2018; 14(36):1801008.
- 152Jang H, Ryoo S-R, Kostarelos K, Han SW, Min D-H. The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials. 2013; 34(13): 3503-3510.
- 153Hyodo M, Sakurai Y, Akita H, Harashima H. “Programmed packaging” for gene delivery. J Control Release. 2014; 193: 316-323.
- 154Davoodi P, Lee LY, Xu Q, et al. Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev. 2018; 132: 104-138.
- 155Du J, Lane LA, Nie S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release. 2015; 219: 205-214.
- 156Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater. 2018; 30(46):1801362.
- 157Biddlestone-Thorpe L, Marchi N, Guo K, et al. Nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents. Adv Drug Deliv Rev. 2012; 64(7): 605-613.
- 158Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016; 235: 34-47.
- 159Luo Y, Yang H, Zhou Y-F, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release. 2020; 317: 195-215.
- 160Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017; 46(14): 4218-4244.
- 161Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018; 13(1): 339.
- 162Alnasser Y, Kambhampati SP, Nance E, et al. Preferential and increased uptake of hydroxyl-terminated PAMAM dendrimers by activated microglia in rabbit brain mixed glial culture. Molecules. 2018; 23(5): 1025.
- 163Pickford F, Marcus J, Camargo LM, et al. Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol. 2011; 178(1): 284-295.
- 164Zabala A, Vazquez-Villoldo N, Rissiek B, et al. P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol Med. 2018; 10(8):e8743.
- 165Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci. 2006; 103(13): 4930-4934.
- 166Hutter E, Boridy S, Labrecque S, et al. Microglial response to gold nanoparticles. ACS Nano. 2010; 4(5): 2595-2606.
- 167Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomed: Nanotechnol Biol Med. 2015; 11(7): 1603-1611.
- 168Zhang F, Lin Y-A, Kannan S, Kannan RM. Targeting specific cells in the brain with nanomedicines for CNS therapies. J Control Release. 2016; 240: 212-226.
- 169S. Hersh D, S. Wadajkar A, B. Roberts N, et al. Evolving drug delivery strategies to overcome the blood brain barrier. Curr Pharm Des. 2016; 22(9): 1177-1193.
- 170Duffy CM, Ahmed S, Yuan C, Mavanji V, Nixon JP, Butterick T. Microglia as a surrogate biosensor to determine nanoparticle neurotoxicity. JoVE (J Vis Exp). 2016; 116:e54662.
- 171Shannahan JH, Bai W, Brown JM. Implications of scavenger receptors in the safe development of nanotherapeutics. Receptor Clin Investig. 2015; 2(3):e811.
- 172Sarlus H, Heneka MT. Microglia in Alzheimer's disease. J Clin Invest. 2017; 127(9): 3240-3249.
- 173Wiley NJ, Madhankumar A, Mitchell RM, et al. Lipopolysaccharide modified liposomes for amyotropic lateral sclerosis therapy: efficacy in SOD1 mouse model. ANP. 2012; 1(3): 44-53.
10.4236/anp.2012.13007 Google Scholar
- 174Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal. 2009; 2(72):re3.
- 175Choi B, Soh M, Manandhar Y, et al. Highly selective microglial uptake of ceria–zirconia nanoparticles for enhanced analgesic treatment of neuropathic pain. Nanoscale. 2019; 11(41): 19437-19447.
- 176Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci. 2013; 7: 6.
- 177David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci. 2011; 12(7): 388-399.
- 178Wang J, Wang J, Wang J, Yang B, Weng Q, He Q. Targeting microglia and macrophages: a potential treatment strategy for multiple sclerosis. Front Pharmacol. 2019; 10: 286.
- 179Papa S, Rossi F, Ferrari R, et al. Selective nanovector mediated treatment of activated proinflammatory microglia/macrophages in spinal cord injury. ACS Nano. 2013; 7(11): 9881-9895.
- 180Bachiller S, Jiménez-Ferrer I, Paulus A, et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci. 2018; 12: 488.
- 181Ofengeim D, Mazzitelli S, Ito Y, et al. RIPK1 mediates a disease-associated microglial response in Alzheimer's disease. Proc Natl Acad Sci. 2017; 114(41): E8788-E8797.
- 182Ren C, Li D, Zhou Q, Hu X. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model. Biomaterials. 2020; 232:119752.
- 183Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-ϵ-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004; 278(1): 1-23.
- 184Grossen P, Witzigmann D, Sieber S, Huwyler J. PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J Control Release. 2017; 260: 46-60.
- 185Oliveira AI, Pinho C, Sarmento B, Dias AC. Quercetin-biapigenin nanoparticles are effective to penetrate the blood–brain barrier. Drug Delivery Transl Res. 2021; 12: 1-15.
- 186Papa S, Caron I, Erba E, et al. Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. Biomaterials. 2016; 75: 13-24.
- 187Zi L, Zhou W, Xu J, et al. Rosuvastatin nanomicelles target neuroinflammation and improve neurological deficit in a mouse model of intracerebral hemorrhage. Int J Nanomedicine. 2021; 16: 2933-2947.
- 188da Luz CM, Boyles MSP, Falagan-Lotsch P, et al. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. J Nanobiotechnology. 2017; 15(1): 11.
- 189Yao L, Gu X, Song Q, et al. Nanoformulated alpha-mangostin ameliorates Alzheimer's disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance. J Control Release. 2016; 226: 1-14.
- 190Su Y, Sun B, Gao X, et al. Intranasal delivery of targeted nanoparticles loaded with miR-132 to brain for the treatment of neurodegenerative diseases. Front Pharmacol. 2020; 11: 1165.
- 191Wang Y, Li S-Y, Shen S, Wang J. Protecting neurons from cerebral ischemia/reperfusion injury via nanoparticle-mediated delivery of an siRNA to inhibit microglial neurotoxicity. Biomaterials. 2018; 161: 95-105.
- 192Manickavasagam D, Novak K, Oyewumi MO. Therapeutic delivery of simvastatin loaded in PLA-PEG polymersomes resulted in amplification of anti-inflammatory effects in activated microglia. AAPS J. 2017; 20(1): 18.
- 193Zhu F-D, Hu Y-J, Yu L, et al. Nanoparticles: a hope for the treatment of inflammation in CNS. Front Pharmacol. 2021; 12: 1114.
- 194Yang R, Zheng Y, Wang Q, Zhao L. Curcumin-loaded chitosan–bovine serum albumin nanoparticles potentially enhanced Aβ 42 phagocytosis and modulated macrophage polarization in Alzheimer's disease. Nanoscale Res Lett. 2018; 13(1): 330.
- 195Martín-Banderas L, Durán-Lobato M, Espinosa-Oliva A, eds. Preparation and evaluation of a caspase inhibitor-loaded chitosan nanoparticles: Xth Spanish-Portuguese Conference on Controlled Drug Delivery, Valencia, Spain, SPLC-CRS; 2013.
- 196Hashemian M, Anissian D, Ghasemi-Kasman M, et al. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy. Prog Neuropsychopharmacol Biol Psychiatry. 2017; 79: 462-471.
- 197Louw AM, Kolar MK, Novikova LN, et al. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomed: Nanotechnol Biol Med. 2016; 12(3): 643-653.
- 198Hernando S, Herran E, Figueiro-Silva J, et al. Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson's disease. Mol Neurobiol. 2018; 55(1): 145-155.
- 199Naeimi R, Safarpour F, Hashemian M, et al. Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum. Neurosci Lett. 2018; 674: 1-10.
- 200Casadomé-Perales Á, Matteis LD, Alleva M, et al. Inhibition of p38 MAPK in the brain through nasal administration of p38 inhibitor loaded in chitosan nanocapsules. Nanomedicine. 2019; 14(18): 2409-2422.
- 201Clementino AR, Marchi C, Pozzoli M, Bernini F, Zimetti F, Sonvico F. Anti-inflammatory properties of statin-loaded biodegradable lecithin/chitosan nanoparticles: a step toward nose-to-brain treatment of neurodegenerative diseases. Front Pharmacol. 2021; 12:716380.
- 202Shin J, Yin Y, Park H, et al. p38 siRNA-encapsulated PLGA nanoparticles alleviate neuropathic pain behavior in rats by inhibiting microglia activation. Nanomedicine. 2018; 13(13): 1607-1621.
- 203Noh C, Shin HJ, Lee S, et al. CX3CR1-targeted PLGA nanoparticles reduce microglia activation and pain behavior in rats with spinal nerve ligation. Int J Mol Sci. 2020; 21(10): 3469.
- 204Lee S, Shin H-J, Noh C, et al. IKBKB siRNA-encapsulated poly (lactic-co-glycolic acid) nanoparticles diminish neuropathic pain by inhibiting microglial activation. Int J Mol Sci. 2021; 22(11): 5657.
- 205Shin N, Shin HJ, Yi Y, et al. p66shc siRNA-encapsulated PLGA nanoparticles ameliorate neuropathic pain following spinal nerve ligation. Polymers. 2020; 12(5): 1014.
- 206Phạm L, Yin Y, Kwon HH, et al. miRNA 146a-5p-loaded poly (d, l-lactic-co-glycolic acid) nanoparticles impair pain behaviors by inhibiting multiple inflammatory pathways in microglia. Nanomedicine. 2020; 15(11): 1113-1126.
- 207Shin J, Yin Y, Kim DK, et al. Foxp3 plasmid-encapsulated PLGA nanoparticles attenuate pain behavior in rats with spinal nerve ligation. Nanomed: Nanotechnol Biol Med. 2019; 18: 90-100.
- 208Kim SI, Shin J, Tran Q, et al. Application of PLGA nanoparticles to enhance the action of duloxetine on microglia in neuropathic pain. Biomater Sci. 2021; 9: 6295-6307.
- 209Haque A, Drasites KP, Cox A, et al. Protective effects of estrogen via nanoparticle delivery to attenuate myelin loss and neuronal death after spinal cord injury. Neurochem Res. 2021; 46: 2979-2990.
- 210Holmkvist AD, Agorelius J, Forni M, Nilsson UJ, Linsmeier CE, Schouenborg J. Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice. J Nanobiotechnology. 2020; 18(1): 27.
- 211Cheng C-Y, Pho Q-H, Wu X-Y, et al. PLGA microspheres loaded with β-cyclodextrin complexes of epigallocatechin-3-gallate for the anti-inflammatory properties in activated microglial cells. Polymers. 2018; 10(5): 519.
- 212Tiwari MN, Agarwal S, Bhatnagar P, et al. Nicotine-encapsulated poly (lactic-co-glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced parkinsonism. Free Radic Biol Med. 2013; 65: 704-718.
- 213Luo L, Yang J, Oh Y, et al. Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis. J Control Release. 2019; 296: 68-80.
- 214Yang M, Jin L, Wu Z, et al. PLGA-PEG nanoparticles facilitate in vivo anti-Alzheimer's effects of fucoxanthin, a marine carotenoid derived from edible brown algae. J Agricult Food Chem. 2021; 69: 9764-9777.
- 215Nakashiro S, Matoba T, Umezu R, et al. Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE−/− mice. Arterioscler Thromb Vasc Biol. 2016; 36(3): 491-500.
- 216Attaluri S, Arora M, Madhu LN, et al. Oral nano-curcumin in a model of chronic gulf war illness alleviates brain dysfunction with modulation of oxidative stress, mitochondrial function, neuroinflammation, neurogenesis, and gene expression. Aging Dis. 2022; 13(2): 583.
- 217Crucho CIC. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem. 2015; 10(1): 24-38.
- 218Jin L, Zhu Z, Hong L, Qian Z, Wang F, Mao Z. ROS-responsive 18β-glycyrrhetic acid-conjugated polymeric nanoparticles mediate neuroprotection in ischemic stroke through HMGB1 inhibition and microglia polarization regulation. Bioact Mater. 2023; 19: 38-49.
- 219Navath RS, Wang B, Kannan S, Romero R, Kannan RM. Stimuli-responsive star poly(ethylene glycol) drug conjugates for improved intracellular delivery of the drug in neuroinflammation. J Control Release. 2010; 142(3): 447-456.
- 220Baghbanbashi M, Yong HW, Zhang I, et al. Stimuli-responsive miktoarm polymer-based formulations for fisetin delivery and regulatory effects in hyperactive human microglia. Macromol Biosci. 2022; 22(10):2200174.
- 221Liu R, Yang J, Liu L, et al. An “Amyloid-β Cleaner” for the treatment of Alzheimer's disease by normalizing microglial dysfunction. Adv Sci. 2020; 7(2):1901555.
- 222Bonilla P, Hernandez J, Giraldo E, et al. Human-induced neural and mesenchymal stem cell therapy combined with a curcumin nanoconjugate as a spinal cord injury treatment. Int J Mol Sci. 2021; 22(11): 5966.