Structure Influence of Amine-Containing Additives on the Solution State and Out-of-Plane Conductivity of PEDOT:PSS for Efficient Organic Solar Cells
Wenwen Jing
School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorXiaopeng Xu
School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorCorresponding Author
Liyang Yu
School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qiang Peng
School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWenwen Jing
School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorXiaopeng Xu
School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorCorresponding Author
Liyang Yu
School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qiang Peng
School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Additives are extensively explored for improving PEDOT:PSS performances mainly through the removal of excess PSS and as a secondary dopant. In this work, amine-containing additives are introduced to PEDOT:PSS solutions as processing additives where the interactions to the PSS are anticipated through electrostatic interactions. Such interactions affected solution property where the increased viscosity is found to significantly increase the out-of-plane conductivity of the PEDOT:PSS thin films. Organic solar cells adopting these additive-assisted processed PEDOT:PSS layers as hole transporting layers (HTL) showed the improved device performances that resulted from the reduced series resistance provided by the PEDOT:PSS HTL. A top power conversion efficiency of 18.28% is achieved with para-phenylenediamine (PPD) additive in the PEDOT:PSS HTL, which is 3.5% higher compared to devices with neat PEDOT:PSS thin film as the HTL.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
marc202300400-sup-0001-SuppMat.pdf113.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Zhang, H. Zhang, Y. Li, S.-U. Zafar, S. Yang, J. Chen, H. Zhou, Y. Zhang, Adv. Funct. Mater. 2022, 32, 2205398.
- 2F. Xu, Q. Zou, G. Xiong, H. Zhang, F. Wang, Y. Wang, Chem. – A Eur. J. 2022, 28, e202104453.
- 3H. Tang, Y. Bai, H. Zhao, X. Qin, Z. Hu, C. Zhou, F. Huang, Y. Cao, Adv. Mater. 2023, 35, 2212236.
- 4H. Dahiya, R. Suthar, K. Khandelwal, S. Karak, G. D. Sharma, ACS Appl. Electron. Mater. 2022, 4, 5119.
- 5Y. Yang, H. Deng, Q. Fu, Mater. Chem. Front. 2020, 4, 3130.
- 6H. Shi, C. Liu, Q. Jiang, J. Xu, Adv. Electron. Mater. 2015, 1, 1500017.
- 7Z. Zhao, Q. Wu, F. Xia, X. Chen, Y. Liu, W. Zhang, J. Zhu, S. Dai, S. Yang, ACS Appl. Mater. Interfaces 2015, 7, 1439.
- 8P. S. Floris, C. Melis, R. Rurali, Adv. Funct. Mater. 2023, 33, 2215125.
- 9R. Rubio-Govea, R. Félix, R. G. Wilks, M. Bär, K. A. Mazzio, Adv. Electron. Mater. 2023, 9, 2300076.
- 10D. Liu, Y. Li, J. Yuan, Q. Hong, G. Shi, D. Yuan, J. Wei, C. Huang, J. Tang, M.-K. Fung, J. Mater. Chem. A 2017, 5, 5701.
- 11Y. R. Kim, O. J. Sandberg, S. Zeiske, G. Burwell, D. B. Riley, P. Meredith, A. Armin, Adv. Funct. Mater. 2023, 33, 2300147.
- 12C. Zuo, L. Ding, Adv. Energy Mater. 2017, 7, 1601193.
- 13J. P. Thomas, L. Zhao, D. Mcgillivray, K. T. Leung, J. Mater. Chem. A 2014, 2, 2383.
- 14S. K. Yee, N. E. Coates, A. Majumdar, J. J. Urban, R. A. Segalman, Phys. Chem. Chem. Phys. 2013, 15, 4024.
- 15R. Peng, Z. Wan, W. Song, T. Yan, Q. Qiao, S. Yang, Z. Ge, M. Wang, ACS Appl. Mater. Interfaces 2019, 11, 42447.
- 16S. Pei, X. Xiong, W. Zhong, X. Xue, M. Zhang, T. Hao, Y. Zhang, F. Liu, L. Zhu, ACS Appl. Mater. Interfaces 2022, 14, 34814.
- 17L. Liu, Y. Kan, G. Ran, M. Zhao, Z. Jia, S. Chen, J. Wang, H. Chen, C. Zhao, K. Gao, W. Zhang, T. Jiu, Sci. China Mater. 2022, 65, 2647.
- 18L. Zhang, B. Xia, X.-L. Shi, W.-D. Liu, Y. Yang, X. Hou, X. Ye, G. Suo, Z.-G. Chen, Carbon 2022, 196, 718.
- 19Z. Zheng, Q. Hu, S. Zhang, D. Zhang, J. Wang, S. Xie, R. Wang, Y. Qin, W. Li, L. Hong, N. Liang, F. Liu, Y. Zhang, Z. Wei, Z. Tang, T. P. Russell, J. Hou, H. Zhou, Adv. Mater. 2018, 30, 1801801.
- 20N.-W. Teng, C.-H. Li, W.-C. Lo, Y.-S. Tsai, C.-Y. Liao, Y.-W. You, H.-L. Ho, W.-L. Li, C.-C. Lee, W.-C. Lin, Y.-M. Chang, Sol. RRL 2020, 4, 2000223.
- 21Q. Gu, J. Wang, R. Peng, W. Song, L. Xie, R. Zhou, Z. Ge, ACS Appl. Energy Mater. 2023, 6, 1982.
- 22B. Deng, H. Lian, B. Xue, R. Song, S. Chen, Z. Wang, T. Xu, H. Dong, S. Wang, Small 2023, 19, 2207505.
- 23J. Wang, R. Peng, J. Gao, D. Li, L. Xie, W. Song, X. Zhang, Y. Fu, Z. Ge, ACS Appl. Mater. Interfaces 2021, 13, 45789.
- 24J. Wang, H. Yu, C. Hou, J. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 26543.
- 25H. Song, Q. Meng, Y. Lu, K. Cai, Adv. Electron. Mater. 2019, 5, 1800822.
- 26Z. Cao, S. Wang, W. Zhu, L. Ding, F. Hao, Sol. RRL 2023, 7, 2200889.
- 27L. Zhang, K. Yang, R. Chen, Y. Zhou, S. Chen, Y. Zheng, M. Li, C. Xu, X. Tang, Z. Zang, K. Sun, Adv. Electron. Mater. 2020, 6, 1900648.
- 28K. Yang, S. Chen, J. Fu, S. Jung, J. Ye, Z. Kan, C. Hu, C. Yang, Z. Xiao, S. Lu, K. Sun, ACS Appl. Mater. Interfaces 2020, 12, 30954.
- 29Ö. Yagci, S. S. Yesilkaya, S. A. Yüksel, F. Ongül, N. M. Varal, M. Kus, S. Günes, O. Icelli, Synth. Met. 2016, 212, 12.
- 30H. Li, C. Zhang, Y. Ma, Z. Li, Y. Xu, Y. Mai, J Energy Chem 2019, 32, 71.
- 31J. Wang, Z. Zheng, D. Zhang, J. Zhang, J. Zhou, J. Liu, S. Xie, Y. Zhao, Y. Zhang, Z. Wei, J. Hou, Z. Tang, H. Zhou, Adv. Mater. 2019, 31, 1806921.
- 32H. M. Chua, N. Yantara, Y. B. Tay, S. Abdul Latiff, S. Mhaisalkar, N. Mathews, ACS Appl. Mater. Interfaces 2023, 15, 14614.
- 33S. Iqbal, A. N. Chishti, M. B. Hussain, F. U. Zaman, A. Qayum, R. Mehmood, S. Zaman, Mater. Chem. Front. 2023, 7, 1813.
- 34W. Liang, J. Huang, Z. Wang, C. Huang, Q. Wei, C. Liao, R. Ma, T. Liu, W. Zhu, Y. Li, ACS Mater. Lett. 2023, 5, 656.
- 35H. Tang, Z. Liu, Z. Hu, Y. Liang, F. Huang, Y. Cao, Sci China Chem 2020, 63, 802.
- 36M. Zeng, X. Wang, R. Ma, W. Zhu, Y. Li, Z. Chen, J. Zhou, W. Li, T. Liu, Z. He, H. Yan, F. Huang, Y. Cao, Adv. Energy Mater. 2020, 10, 2000743.
- 37V. Andrei, K. Bethke, F. Madzharova, A. C. Bronneberg, J. Kneipp, K. Rademann, ACS Appl. Mater. Interfaces 2017, 9, 33308.
- 38J. A. Tsamopoulos, M. E. Chen, A. V. Borkar, Rheol. Acta 1996, 35, 597.
- 39J. Danglad-Flores, S. Eickelmann, H. Riegler, Chem. Eng. Sci. 2018, 179, 257.
- 40Y. Diao, L. Shaw, Z. Bao, S. C. B. Mannsfeld, Energy Environ. Sci. 2014, 7, 2145.
- 41F. Zabihi, Y. Xie, S. Gao, M. Eslamian, Appl. Surf. Sci. 2015, 338, 163.
- 42M. Zhang, X. Guo, W. Ma, H. Ade, J. Hou, Adv. Mater. 2015, 27, 4655.
- 43C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605.
- 44G. Wu, X. Xu, C. Liao, L. Yu, R. Li, Q. Peng, Small 2023, 19, 2302127.