Reconstituting Low-Density Lipoprotein with NIR-Absorbing Organic Photothermal Agents for Targeted Killing of Cancer Cells
Jiaxin Wang
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorLiang Tian
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorKaiyu Wu
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorChao Wang
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Chunlei Zhu
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
E-mail: [email protected]
Search for more papers by this authorJiaxin Wang
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorLiang Tian
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorKaiyu Wu
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorChao Wang
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Chunlei Zhu
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Photothermal therapy (PTT) systems typically do not possess intrinsic tumor-targeting capability, resulting in indiscriminate thermal damage to both cancer and normal cells. Herein, a low-density lipoprotein (LDL)-based nanosystem (denoted as MTTQ@LDL) is reported for targeted photothermal killing of cancer cells. Such a nanosystem is fabricated by reconstituting the lipophilic core of LDL with an organic photothermal agent MTTQ. The reconstitution process improves the supramolecular photothermal effects of MTTQ assemblies, which contributes to the significantly enhanced photothermal conversion efficiency (41.3% vs. 16.2%). MTTQ@LDL can actively target LDL receptor-overexpressed cancer cells via receptor-mediated endocytosis, enabling the selective killing of cancer cells over normal cells (98% vs. 7%) post-NIR irradiation. Reconstituted LDL can serve as a promising platform for targeted delivery of functional materials, holding great promise in tumor eradication in vivo.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202300395-sup-0001-SuppMat.pdf1 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Zhang, Q. Li, L. Li, J. Ouyang, T. Wang, J. Chen, X. Hu, Y. Ao, D. Qin, L. Zhang, J. Xue, J. Cheng, W. Tao, ACS Nano 2023, 17, 6466.
- 2N. Yang, Y. Kang, Y. Cong, X. Wang, C. Yao, S. Wang, L. Li, Adv. Mater. 2022, https://doi.org/10.1002/adma.202208349.
10.1002/adma.202208349 Google Scholar
- 3J.-J. Hu, Y.-J. Cheng, X.-Z. Zhang, Nanoscale 2018, 10, 22657.
- 4D. Xi, M. Xiao, J. Cao, L. Zhao, N. Xu, S. Long, J. Fan, K. Shao, W. Sun, X. Yan, X. Peng, Adv. Mater. 2020, 32, 1907855.
- 5R. Zheng, J. Yang, M. Mamuti, D.-Y. Hou, H.-W. An, Y. Zhao, H. Wang, Angew. Chem., Int. Ed. 2021, 60, 7809.
- 6S. Peng, H. Wang, Y. Xin, W. Zhao, M. Zhan, J. Li, R. Cai, L. Lu, Nano Today 2021, 40, 101240.
- 7W. Shao, F. Zhao, J. Xue, L. Huang, BMEMat 2023, 1, e12009.
10.1002/bmm2.12009 Google Scholar
- 8E. Feng, Y. Liu, S. Lv, D. Liu, S. Huang, Z. Li, F. Song, Adv. Funct. Mater. 2022, 32, 2209258.
- 9R. Xing, Q. Zou, C. Yuan, L. Zhao, R. Chang, X. Yan, Adv. Mater. 2019, 31, 1900822.
- 10W. Guo, X. Gao, Q. Zhang, B.o Hu, J. Sun, X. Zhao, K. Xu, B. Tang, Anal. Chem. 2023, 95, 4682.
- 11L. Yang, Y. Zhu, L. Liang, C. Wang, X. Ning, X. Feng, Nano Lett. 2022, 22, 4207.
- 12L. Zhao, Y. Liu, R. Xing, X. Yan, Angew. Chem., Int. Ed. 2020, 59, 3793.
- 13H. Fu, K.e Xue, Y. Zhang, M. Xiao, K. Wu, L. Shi, C. Zhu, Adv. Sci. 2023, 10, 2206865.
- 14J. Wang, B. Hao, K.e Xue, H. Fu, M. Xiao, Y. Zhang, L. Shi, C. Zhu, Adv. Mater. 2022, 34, 2205653.
- 15S. Shen, L. Feng, S. Qi, J. Cao, Y. Ge, L. Wu, S. Wang, Nano Lett. 2020, 20, 2137.
- 16H. Wang, J. Chang, M. Shi, W. Pan, N. Li, B. Tang, Angew. Chem., Int. Ed. 2019, 58, 1057.
- 17C. Chen, W. Tang, D. Jiang, G. Yang, X. Wang, L. Zhou, W. Zhang, P. Wang, Nanoscale 2019, 11, 11012.
- 18Z. Sun, Y. Hou, BMEMat 2023, 1, 12012.
10.1002/bmm2.12012 Google Scholar
- 19L. Zhao, X. Zhang, X. Wang, X. Guan, W. Zhang, J. Ma, J. Nanobiotechnol. 2021, 19, 335.
- 20C. Zhu, Y. Xia, Chem. Soc. Rev. 2017, 46, 7668.
- 21E. V. Orlova, M. B. Sherman, W. Chiu, H. Mowri, L. C. Smith, A. M. Gotto, Proc. Natl. Acad. Sci. USA 1999, 96, 8420.
- 22S. Busatto, S. A. Walker, W. Grayson, A. Pham, M. Tian, N. Nesto, J. Barklund, J. Wolfram, Lipids Dis. Pathol. Diagn. Ther. 2020, 159, 377.
- 23H. Huang, W. Cruz, J. Chen, G. Zheng, WIREs Nanomed. Nanobiotechnol. 2015, 7, 298.
- 24L. Bourré, S. Thibaut, A. Briffaud, N. Rousset, S. Eléouet, Y. Lajat, T. Patrice, J. Photochem. Photobiol., B 2002, 67, 23.
- 25B. He, C. Wang, F. Wang, L. Tian, H. Wang, C. Fu, J. Liu, C. Xi, C. Zhu, Q. Yang, J. Controlled Release 2023, 356, 554.
- 26C. Wang, X. Zhao, H. Jiang, J. Wang, W. Zhong, K. Xue, C. Zhu, Nanoscale 2021, 13, 1195.
- 27C. Zhu, P. Pradhan, D. Huo, J. Xue, S. Shen, K. Roy, Y. Xia, Angew. Chem., Int. Ed. 2017, 56, 10399.
- 28J. Guo, J. Dai, X. Peng, Q. Wang, S. Wang, X. Lou, F. Xia, Z. Zhao, B. Z. Tang, ACS Nano 2021, 15, 20042.
- 29Z. Jiang, C. Zhang, X. Wang, M. Yan, Z. Ling, Y. Chen, Z. Liu, Angew. Chem., Int. Ed. 2021, 60, 22376.
- 30Z. Cheng, T. Zhang, W. Wang, Q. Shen, Y. Hong, J. Shao, X. Xie, Z. Fei, X. Dong, Chin. Chem. Lett. 2021, 32, 1580.
- 31B. A. D. Neto, P. H. P. R. Carvalho, J. R. Correa, Acc. Chem. Res. 2015, 48, 1560.
- 32H. Shen, Y. Li, Y. Li, Aggregate 2020, 1, 57.
- 33S. Liu, X. Zhou, H. Zhang, H. Ou, J. W. Y. Lam, Y. Liu, L. Shi, D. Ding, B. Z. Tang, J. Am. Chem. Soc. 2019, 141, 5359.
- 34A. Belyaev, Y.-H. Cheng, Z.-Y. Liu, A. J. Karttunen, P.-T. Chou, I. O. Koshevoy, Angew. Chem., Int. Ed. 2019, 58, 13456.
- 35H. Li, H. Wen, Z. Zhang, N. Song, R. T. K. Kwok, J. W. Y. Lam, L. Wang, D. Wang, B. Z. Tang, Angew. Chem., Int. Ed. 2020, 59, 20371.
- 36Y. Wang, G. Xia, M. Tan, M. Wang, Y. Li, H. Wang, Adv. Funct. Mater. 2022, 32, 2113098.
- 37J. Qi, Y. Fang, R. T. K. Kwok, X. Zhang, X. Hu, J. W. Y. Lam, D. Ding, B. Z. Tang, ACS Nano 2017, 11, 7177.
- 38H. S. Jung, P. Verwilst, A. Sharma, J. Shin, J. L. Sessler, J. S. Kim, Chem. Soc. Rev. 2018, 47, 2280.
- 39T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
- 40Z. Liu, T. Lu, Q. Chen, Carbon 2020, 165, 461.
- 41J. R. Reimers, J. Chem. Phys. 2001, 115, 9103.
- 42D. G. Congrave, B. H. Drummond, P. J. Conaghan, H. Francis, S. T. E. Jones, C. P. Grey, N. C. Greenham, D. Credgington, H. Bronstein, J. Am. Chem. Soc. 2019, 141, 18390.
- 43Q. Zou, M. Abbas, L. Zhao, S. Li, G. Shen, X. Yan, J. Am. Chem. Soc. 2017, 139, 1921.
- 44Y. Liu, G. Shen, L. Zhao, Q. Zou, T. Jiao, X. Yan, ACS Appl. Mater. Interfaces 2019, 11, 41898.
- 45R. Chang, Q. Zou, L. Zhao, Y. Liu, R. Xing, X. Yan, Adv. Mater. 2022, 34, 2200139.