Volume 44, Issue 23 2300395
Research Article

Reconstituting Low-Density Lipoprotein with NIR-Absorbing Organic Photothermal Agents for Targeted Killing of Cancer Cells

Jiaxin Wang

Jiaxin Wang

Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China

Search for more papers by this author
Liang Tian

Liang Tian

Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China

Search for more papers by this author
Kaiyu Wu

Kaiyu Wu

Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China

Search for more papers by this author
Chao Wang

Chao Wang

Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China

Search for more papers by this author
Chunlei Zhu

Corresponding Author

Chunlei Zhu

Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071 China

E-mail: [email protected]

Search for more papers by this author
First published: 11 August 2023
Citations: 1

Abstract

Photothermal therapy (PTT) systems typically do not possess intrinsic tumor-targeting capability, resulting in indiscriminate thermal damage to both cancer and normal cells. Herein, a low-density lipoprotein (LDL)-based nanosystem (denoted as MTTQ@LDL) is reported for targeted photothermal killing of cancer cells. Such a nanosystem is fabricated by reconstituting the lipophilic core of LDL with an organic photothermal agent MTTQ. The reconstitution process improves the supramolecular photothermal effects of MTTQ assemblies, which contributes to the significantly enhanced photothermal conversion efficiency (41.3% vs. 16.2%). MTTQ@LDL can actively target LDL receptor-overexpressed cancer cells via receptor-mediated endocytosis, enabling the selective killing of cancer cells over normal cells (98% vs. 7%) post-NIR irradiation. Reconstituted LDL can serve as a promising platform for targeted delivery of functional materials, holding great promise in tumor eradication in vivo.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.