Deciphering the Effects of Molecular Dipole Moments on the Photovoltaic Performance of Organic Solar Cells
Xiaofei Ji
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences 99 Haike Road, Zhangjiang Hi-Tech Park Pudong, Shanghai, 201210 China
Search for more papers by this authorTing Wang
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Shaanxi Coal Chemical Industry Technology Research Institute Co. LTD, Xi'an, 710076 China
Search for more papers by this authorCorresponding Author
Qiang Fu
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077 Hong Kong
E-mail: [email protected], [email protected]
Search for more papers by this authorDongxue Liu
Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038 China
Search for more papers by this authorZiang Wu
Department of Chemistry, Korea University, Seoul, 02841 South Korea
Search for more papers by this authorMingtao Zhang
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorHan Young Woo
Department of Chemistry, Korea University, Seoul, 02841 South Korea
Search for more papers by this authorCorresponding Author
Yongsheng Liu
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
E-mail: [email protected], [email protected]
Search for more papers by this authorXiaofei Ji
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences 99 Haike Road, Zhangjiang Hi-Tech Park Pudong, Shanghai, 201210 China
Search for more papers by this authorTing Wang
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Shaanxi Coal Chemical Industry Technology Research Institute Co. LTD, Xi'an, 710076 China
Search for more papers by this authorCorresponding Author
Qiang Fu
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077 Hong Kong
E-mail: [email protected], [email protected]
Search for more papers by this authorDongxue Liu
Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038 China
Search for more papers by this authorZiang Wu
Department of Chemistry, Korea University, Seoul, 02841 South Korea
Search for more papers by this authorMingtao Zhang
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Search for more papers by this authorHan Young Woo
Department of Chemistry, Korea University, Seoul, 02841 South Korea
Search for more papers by this authorCorresponding Author
Yongsheng Liu
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
The dielectronic constant of organic semiconductor materials is directly related to its molecule dipole moment, which can be used to guide the design of high-performance organic photovoltaic materials. Herein, two isomeric small molecule acceptors, ANDT-2F and CNDT-2F, are designed and synthesized by using the electron localization effect of alkoxy in different positions of naphthalene. It is found that the axisymmetric ANDT-2F exhibits a larger dipole moment, which can improve exciton dissociation and charge generation efficiencies due to the strong intramolecular charge transfer effect, resulting in the higher photovoltaic performance of devices. Moreover, PBDB-T:ANDT-2F blend film exhibits larger and more balanced hole and electron mobility as well as nanoscale phase separation due to the favorable miscibility. As a result, the optimized device based on axisymmetric ANDT-2F shows a JSC of 21.30 mA cm−2, an FF of 66.21%, and a power conversion energy of 12.13%, higher than that of centrosymmetric CNDT-2F-based device. This work provides important implications for designing and synthesizing efficient organic photovoltaic materials by tuning their dipole moment.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202300213-sup-0001-SuppMat.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
- 2G. Li, R. Zhu, Y. Yang, Nat. Photonics 2012, 6, 153.
- 3L. Dou, Y. Liu, Z. Hong, G. Li, Y. Yang, Chem. Rev. 2015, 115, 12633.
- 4J. Hou, O. Inganäs, R. H. Friend, F. Gao, Nat. Mater. 2018, 17, 119.
- 5L. Meng, C. Sun, R. Wang, W. Huang, Z. Zhao, P. Sun, T. Huang, J. Xue, J.-W. Lee, C. Zhu, Yu Huang, Y. Li, Y. Yang, J. Am. Chem. Soc. 2018, 140, 17255.
- 6G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 2018, 118, 3447.
- 7C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605.
- 8K. Jiang, J. Zhang, C. Zhong, F. R. Lin, F. Qi, Q. Li, Z. Peng, W. Kaminsky, S.-H. Jang, J. Yu, X. Deng, H. Hu, D. Shen, F. Gao, H. Ade, M. Xiao, C. Zhang, A. K.-Y. Jen, Nat. Energy 2022, 7, 1076.
- 9Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei, J. Hou, Adv. Mater. 2021, 33, 2102420.
- 10K. Chong, X. Xu, H. Meng, J. Xue, L. Yu, W. Ma, Q. Peng, Adv. Mater. 2022, 34, 2109516.
- 11C. He, Y. Pan, Y. Ouyang, Q. Shen, Y. Gao, K. Yan, J. Fang, Y. Chen, C.-Q. Ma, J. Min, C. Zhang, L. Zuo, H. Chen, Energy Environ. Sci. 2022, 15, 2537.
- 12L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C.-C. Chen, R. C. I. Mackenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mater. 2022, 21, 656.
- 13Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170.
- 14B. Kan, H. Feng, H. Yao, M. Chang, X. Wan, C. Li, J. Hou, Y. Chen, Sci. China Chem. 2018, 61, 1307.
- 15S. Li, L. Ye, W. Zhao, H. Yan, B. Yang, D. Liu, W. Li, H. Ade, J. Hou, J. Am. Chem. Soc. 2018, 140, 7159.
- 16H. Zhang, H. Yao, J. Hou, J. Zhu, J. Zhang, W. Li, R. Yu, B. Gao, S. Zhang, J. Hou, Adv. Mater. 2018, 30, 1800613.
- 17S. Zhang, Y. Qin, J. Zhu, J. Hou, Adv. Mater. 2018, 30, 1800868.
- 18Y. Zhang, H. Yao, S. Zhang, Y. Qin, J. Zhang, L. Yang, W. Li, Z. Wei, F. Gao, J. Hou, Sci. China Chem. 2018, 61, 1328.
- 19B. Kan, M. Li, Q. Zhang, F. Liu, X. Wan, Y. Wang, W. Ni, G. Long, X. Yang, H. Feng, Y. Zuo, M. Zhang, F. Huang, Y. Cao, T. P. Russell, Y. Chen, J. Am. Chem. Soc. 2015, 137, 3886.
- 20K. Kim, K. E. Plass, A. J. Matzger, J. Am. Chem. Soc. 2005, 127, 4879.
- 21L. Ren, D. Yuan, E. Gann, Y. Guo, L. Thomsen, C. R. Mcneill, C.-A. Di, Y. Yi, X. Zhu, D. Zhu, Chem. Mater. 2017, 29, 4999.
- 22W. Gao, Q. An, C. Zhong, Z. Luo, R. Ming, M. Zhang, Y. Zou, F. Liu, F. Zhang, C. Yang, Chem. Sci. 2018, 9, 8142.
- 23W. Gao, Q. An, C. Zhong, Z. Luo, R. Ming, M. Zhang, Y. Zou, F. Liu, F. Zhang, C. Yang, Chem. Sci. 2018, 9, 8142.
- 24W. Gao, T. Liu, C. Zhong, G. Zhang, Y. Zhang, R. Ming, L. Zhang, J. Xin, K. Wu, Y. Guo, W. Ma, H. Yan, Y. Liu, C. Yang, ACS Energy Lett. 2018, 3, 1760.
- 25J. Song, C. Li, L. Ye, C. Koh, Y. Cai, D. Wei, H. Y. Woo, Y. Sun, J. Mater. Chem. A 2018, 6, 18847.
- 26J. Zhang, W. Liu, S. Chen, S. Xu, C. Yang, X. Zhu, J. Mater. Chem. A 2018, 6, 22519.
- 27M. Li, Y. Zhou, J. Zhang, J. Song, Z. Bo, J. Mater. Chem. A 2019, 7, 8889.
- 28X. Li, C. Li, L. Ye, K. Weng, H. Fu, H. S. Ryu, D. Wei, X. Sun, H. Y. Woo, Y. Sun, J. Mater. Chem. A 2019, 7, 19348.
- 29S. Feng, C'e Zhang, Y. Liu, Z. Bi, Z. Zhang, X. Xu, W. Ma, Z. Bo, Adv. Mater. 2017, 29, 1703527.
- 30S. Feng, C'e Zhang, Z. Bi, Y. Liu, P. Jiang, S. Ming, X. Xu, W. Ma, Z. Bo, ACS Appl. Mater. Interfaces 2019, 11, 3098.
- 31Y. Zhao, Z. Luo, G. Li, J. Luo, Z.-G. Zhang, Y. Li, C. Yang, Chem. Commun. 2018, 54, 9801.
- 32T. J. Aldrich, M. Matta, W. Zhu, S. M. Swick, C. L. Stern, G. C. Schatz, A. Facchetti, F. S. Melkonyan, T. J. Marks, J. Am. Chem. Soc. 2019, 141, 3274.
- 33W. Gao, M. Zhang, T. Liu, R. Ming, Q. An, K. Wu, D. Xie, Z. Luo, C. Zhong, F. Liu, F. Zhang, H. Yan, C. Yang, Adv. Mater. 2018, 30, 1800052.
- 34L. Ye, Y. Xie, Y. Xiao, J. Song, C. Li, H. Fu, K. Weng, X. Lu, S. Tan, Y. Sun, J. Mater. Chem. A 2019, 7, 8055.
- 35J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140.
- 36Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang, L. Hong, K. Xian, B. Xu, S. Zhang, J. Peng, Z. Wei, F. Gao, J. Hou, Nat. Commun. 2019, 10, 2515.
- 37R. Qin, D. Wang, G. Zhou, Z.-P. Yu, S. Li, Y. Li, Z.-X. Liu, H. Zhu, M. Shi, X. Lu, C.-Z. Li, H. Chen, J. Mater. Chem. A 2019, 7, 27632.
- 38R. Wang, J. Yuan, R. Wang, G. Han, T. Huang, W. Huang, J. Xue, H.-C. Wang, C. Zhang, C. Zhu, P. Cheng, D. Meng, Y. Yi, K.-H. Wei, Y. Zou, Y. Yang, Adv. Mater. 2019, 31, 1904215.
- 39P. Li, X. Meng, K. Jin, Z. Xu, J. Zhang, L. Zhang, C. Niu, F. Tan, C. Yi, Z. Xiao, Y. Feng, G. W. Wang, L. Ding, Carbon Energy 2022, 5, 250.
10.1002/cey2.250 Google Scholar
- 40Y. Zhou, M. Li, J. Song, Y. Liu, J. Zhang, L. Yang, Z. Zhang, Z. Bo, H. Wang, Nano Energy 2018, 45, 10.
- 41L. Yang, M. Li, J. Song, Y. Zhou, Z. Bo, H. Wang, Adv. Funct. Mater. 2018, 28, 1705927.
- 42D. Liu, B. Kan, X. Ke, N. Zheng, Z. Xie, D. Lu, Y. Liu, Adv. Energy Mater. 2018, 8, 1801618.
- 43S. Shen, L. Yang, Y. Mi, Y. Zhou, M. Li, J. Zhang, L. Ye, J. Song, ACS Appl. Energy Mater. 2023, 6, 1066.
- 44R. Hou, M. Li, X. Ma, H. Huang, H. Lu, Q. Jia, Y. Liu, X. Xu, H.-B. Li, Z. Bo, ACS Appl. Mater. Interfaces 2020, 12, 46220.
- 45J. Gao, Y. Li, S. Li, X. Xia, X. Lu, M. Shi, H. Chen, Sol. Energy Mater. Sol. Cells 2021, 225, 111046.
- 46J. Wu, Y. Chen, B. Hu, Z. Pang, Z. Lu, Y. Huang, Chemistry 2019, 25, 6385.
- 47Y. Lin, B. Adilbekova, Y. Firdaus, E. Yengel, H. Faber, M. Sajjad, X. Zheng, E. Yarali, A. Seitkhan, O. M. Bakr, A. El-Labban, U. Schwingenschlögl, V. Tung, I. Mcculloch, F. Laquai, T. D. Anthopoulos, Adv. Mater. 2019, 31, 1902965.
- 48M. P. De Haas, J. M. Warman, Chem. Phys. 1982, 73, 35.
- 49C. Dehu, F. Meyers, J. L. Bredas, J. Am. Chem. Soc. 1993, 115, 6198.
- 50B. Carsten, J. M. Szarko, L. Lu, H. J. Son, F. He, Y. Y. Botros, L. X. Chen, L. Yu, Macromolecules 2012, 45, 6390.
- 51B. Carsten, J. M. Szarko, H. J. Son, W. Wang, L. Lu, F. He, B. S. Rolczynski, S. J. Lou, L. X. Chen, L. Yu, J. Am. Chem. Soc. 2011, 133, 20468.
- 52X. Wang, B. Kan, Z. Kuang, H. Song, G. Long, Q. Guo, Y. Chen, A. Xia, J. Phys. Chem. C 2018, 122, 26851.
- 53C. Li, Y. Xie, B. Fan, G. Han, Y. Yi, Y. Sun, J. Mater. Chem. C 2018, 6, 4873.
- 54V. J. Hammond, W. C. Price, Trans. Faraday Soc. 1955, 51, 605.
- 55A. Maccoll, Q. Rev., Chem. Soc. 1947, 1, 16.
- 56C. M. Proctor, J. A. Love, T.-Q. Nguyen, Adv. Mater. 2014, 26, 5957.
- 57W. Li, S. Albrecht, L. Yang, S. Roland, J. R. Tumbleston, T. Mcafee, L. Yan, M. A. Kelly, H. Ade, D. Neher, W. You, J. Am. Chem. Soc. 2014, 136, 15566.
- 58W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J. Am. Chem. Soc. 2017, 139, 7148.
- 59A. Maurano, R. Hamilton, C. G. Shuttle, A. M. Ballantyne, J. Nelson, B. O'regan, W. Zhang, I. Mcculloch, H. Azimi, M. Morana, C. J. Brabec, J. R. Durrant, Adv. Mater. 2010, 22, 4987.
- 60J. Song, M. Zhang, M. Yuan, Y. Qian, Y. Sun, F. Liu, Small Methods 2018, 2, 1700229.
- 61J. Comyn, Int. J. Adhes. Adhes. 1992, 12, 145.
- 62S. Nilsson, A. Bernasik, A. Budkowski, E. Moons, Macromolecules 2007, 40, 8291.
- 63H. Feng, Y.-Q.-Q. Yi, X. Ke, J. Yan, Y. Zhang, X. Wan, C. Li, N. Zheng, Z. Xie, Y. Chen, Adv. Energy Mater. 2019, 9, 1803541.