A Versatile Assembly Approach toward Multifunctional Supramolecular Poly(Ionic Liquid) Nanoporous Membranes in Water
Luyao Xu
Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorYingyi Hu
Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorDongbing Zhao
State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorWangqing Zhang
Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorCorresponding Author
Hong Wang
Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 P. R. China
E-mail: [email protected]
Search for more papers by this authorLuyao Xu
Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorYingyi Hu
Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorDongbing Zhao
State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorWangqing Zhang
Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorCorresponding Author
Hong Wang
Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Hydrogen (H)-bonding-integration of multiple ingredients into supramolecular polyelectrolyte nanoporous membranes in water, thereby achieving tailor-made porous architectures, properties, and functionalities, remains one of the foremost challenges in materials chemistry due to the significantly opposing action of water molecules against H-bonding. Herein, a strategy is described that allows direct fusing of the functional attributes of small additives into water-involved hydrogen bonding assembled supramolecular poly(ionic liquid) (PIL) nanoporous membranes (SPILMs) under ambient conditions. It discloses that the pore size distributions and mechanical properties of SPILMs are rationally controlled by tuning the H-bonding interactions between small additives and homo-PIL. It demonstrates that, benefiting from the synergy of multiple noncovalent interactions, small dye additives/homo-PIL solutions can be utilized as versatile inks for yielding colorful light emitting films with robust underwater adhesion strength, excellent stretchability, and flexibility on diverse substrates, including both hydrophilic and hydrophobic surfaces. This system provides a general platform for integrating the functional attributes of a diverse variety of additives into SPILMs to create multifunctional and programmable materials in water.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
marc202300189-sup-0001-SuppMat.pdf2 MB | Supporting Information |
marc202300189-sup-0002-Movies1.avi18 MB | Supplemental Movie 1 |
marc202300189-sup-0003-Movies2.avi15.1 MB | Supplemental Movie 2 |
marc202300189-sup-0004-Movies3.avi4.2 MB | Supplemental Movie 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) L. Brunsveld, B. J. B. Folmer, E. W. Meijer, R. P. Sijbesma, Chem. Rev. 2001, 101, 4071; b) W. Zhang, Q. Zhao, J. Yuan, Angew. Chem., Int. Ed. 2018, 57, 6754; c) S. J. D. Lugger, S. J. A. Houben, Y. Foelen, M. G. Debije, A. P. H. J. Schenning, D. J. Mulder, Chem. Rev. 2022, 122, 4946; d) A. Lavrenova, D. W. R. Balkenende, Y. Sagara, S. Schrettl, Y. C. Simon, C. Weder, J. Am. Chem. Soc. 2017, 139, 4302.
- 2a) E. Fuentes, M. Gerth, J. A. Berrocal, C. Matera, P. Gorostiza, I. K. Voets, S. Pujals, L. Albertazzi, J. Am. Chem. Soc. 2020, 142, 10069; b) L. Jiang, X. Huang, D. Chen, H. Yan, X. Li, X. Du, Angew. Chem., Int. Ed. 2017, 56, 2655; c) V. Senechal, J. Rodriguez-Hernandez, C. Drummond, Macromolecules 2022, 55, 2636.
- 3a) Z. Lei, P. Wu, Nat. Commun. 2018, 9, 1134; b) P. Escalé, L. Rubatat, C. Derail, M. Save, L. Billon, Macromol. Rapid Commun. 2011, 32, 1072; c) S. P. Nunes, A. R. Behzad, B. Hooghan, R. Sougrat, M. Karunakaran, N. Pradeep, U. Vainio, K. V. Peinemann, ACS Nano 2011, 5, 3516.
- 4a) Z. Li, X. Liu, G. Wang, B. Li, H. Chen, H. Li, Y. Zhao, Nat. Commun. 2021, 12, 1363; b) B. Wu, X. Wang, J. Yang, Z. Hua, K. Tian, R. Kou, J. Zhang, S. Ye, Y. Luo, V. S. J. Craig, G. Zhang, G. Liu, Sci. Adv. 2016, 2, e1600579.
- 5a) C. Jiang, V. V. Tsukruk, Adv. Mater. 2006, 18, 829; b) F. X. Xiao, M. Pagliaro, Y. J. Xu, B. Liu, Chem. Soc. Rev. 2016, 45, 3088.
- 6a) I. Robayo-Molina, A. F. Molina-Osorio, L. Guinane, S. A. M. Tofail, M. D. Scanlon, J. Am. Chem. Soc. 2021, 143, 9060; b) C. B. Cooper, Z. Bao, Acc Mater Res 2022, 3, 948.
- 7a) T. Boudou, T. Crouzier, K. Ren, G. Blin, C. Picart, Adv. Mater. 2010, 22, 441; b) J. Yu, K.e Wang, C. Fan, X. Zhao, J. Gao, W. Jing, X. Zhang, J. Li, Y. Li, J. Yang, W. Liu, Adv. Mater. 2021, 33, 2008395; c) M. H. Bakker, C. C. Lee, E. W. Meijer, P. Y. W. Dankers, L. Albertazzi, ACS Nano 2016, 10, 1845.
- 8a) M. Zhu, J. Li, J. Yu, Z. Li, B. Ding, Angew. Chem., Int. Ed. 2022, 61, e202200226; b) P. C. Demuth, Y. Min, B. Huang, J. A. Kramer, A. D. Miller, D. H. Barouch, P. T. Hammond, D. J. Irvine, Nat. Mater. 2013, 12, 367; c) Y. Zhao, S. Song, X. Ren, J. Zhang, Q. Lin, Y. Zhao, Chem. Rev. 2022, 122, 5604.
- 9a) Z. Zhang, M.d. M. Rahman, C. Abetz, A. L. Höhme, E. Sperling, V. Abetz, Adv. Mater. 2020, 32, 1907014; b) N. Joseph, M. A. Mees, M. Vergaelen, B. Valley, H. Marien, R. Hoogenboom, I. F. J. Vankelecom, ACS Appl Polym Mater 2020, 2, 5398; c) R. M. Duchanois, M. Heiranian, J. Yang, C. J. Porter, Q. Li, X. Zhang, R. Verduzco, M. Elimelech, Sci. Adv. 2022, 8, eabm9436; d) W. Han, M. J. Yin, W. H. Zhang, Z. J. Liu, N. Wang, K. T. Yong, Q. F. An, Adv. Sci. 2021, 8, 2102594.
- 10R. Milani, N. Houbenov, F. Fernandez-Palacio, G. Cavallo, A. Luzio, J. Haataja, G. Giancane, M. Saccone, A. Priimagi, P. Metrangolo, O. Ikkala, Chem 2017, 2, 417.
- 11a) J. Cho, J. Hong, K. Char, F. Caruso, J. Am. Chem. Soc. 2006, 128, 9935; b) P. Liao, S. Zang, T. Wu, H. Jin, W. Wang, J. Huang, B. Z. Tang, Y. Yan, Nat. Commun. 2021, 12, 5496; c) Y.u Wang, H. Wu, W. Hu, J. F. Stoddart, Adv. Mater. 2022, 34, 2105405.
- 12a) J. Li, J. Gao, T. Guo, X. Huang, X.u Zhang, C. Xu, H. Xue, ACS Appl Polym Mater 2019, 1, 3148; b) S. Kim, W. G. Lim, H. Im, M. Ban, J. W. Han, J. Lee, J. Hwang, J. Lee, J. Am. Chem. Soc. 2021, 143, 15644.
- 13a) Y. Bodenthin, U. Pietsch, H. Möhwald, D. G. Kurth, J. Am. Chem. Soc. 2005, 127, 3110; b) T. Zhu, Y. Sha, J. Yan, P. Pageni, M. A. Rahman, Y. Yan, C. Tang, Nat Commun 2018, 9, 4329.
- 14a) Y. Fu, S. Bai, S. Cui, D. Qiu, Z. Wang, X.i Zhang, Macromolecules 2002, 35, 9451; b) J. Borges, J. F. Mano, Chem. Rev. 2014, 114, 8883; c) E. Kharlampieva, V. Kozlovskaya, S. A. Sukhishvili, Adv. Mater. 2009, 21, 3053; d) K. Manabe, K. H. Kyung, S. Shiratori, ACS Appl Mater Interfaces 2015, 7, 4763.
- 15a) Y. Tsuge, Y. Moriyama, Y. Tokura, S. Shiratori, Anal. Chem. 2016, 88, 10744; b) R. Zhang, S. Ji, N. Wang, L. Wang, G. Zhang, J. R. Li, Angew. Chem., Int. Ed. 2014, 53, 9775; c) P. Meng, A. Brock, Y. Xu, C. Han, S.u Chen, C. Yan, J. Mcmurtrie, J. Xu, J. Am. Chem. Soc. 2020, 142, 479; d) N. A. Tavenor, M. J. Murnin, W. S. Horne, J. Am. Chem. Soc. 2017, 139, 2212.
- 16a) L. Xiang, Q. Li, C. Li, Q. Yang, F. Xu, Y. Mai, Adv. Mater. 2022, 35, 2207684;
b) D. Montarnal, N. Delbosc, C. Chamignon, M. A. Virolleaud, Y. Luo, C. J. Hawker, E. Drockenmuller, J. Bernard, Angew. Chem., Int. Ed. 2015, 54, 11117;
c) L. Guo, K. Ntetsikas, G. Zapsas, R. Thankamony, Z. Lai, N. Hadjichristidis, Angew. Chem., Int. Ed. 2023, 135, e202212400.
10.1002/ange.202212400 Google Scholar
- 17a) G. B. Schuster, B. J. Cafferty, S. C. Karunakaran, N. V. Hud, J. Am. Chem. Soc. 2021, 143, 9279; b) W. L. Zhou, Y. Chen, Q. Yu, H. Zhang, Z. X. Liu, X. Y. Dai, J. J. Li, Y.u Liu, Nat. Commun. 2020, 11, 4655; c) S. Chen, S. M. Polen, L.u Wang, M. Yamasaki, C. M. Hadad, J. D. Badjic, J. Am. Chem. Soc. 2016, 138, 11312; d) M. Ramakrishnan, A. van Teijlingen, T. Tuttle, R. V. Ulijn, Angew. Chem., Int. Ed. 2023, 62, e202218067.
- 18a) W. Qian, J. Texter, F. Yan, Chem. Soc. Rev. 2017, 46, 1124; b) J. Bartels, G. E. Sanoja, C. M. Evans, R. A. Segalman, M. E. Helgeson, Macromolecules 2017, 50, 8979; c) J. Zhang, Z. Chen, Y. Zhang, S. Dong, Y. Chen, S. Zhang, Adv. Mater. 2021, 33, 2100962; d) F. Yan, J. Texter, Angew. Chem., Int. Ed. 2007, 46, 2440; e) M. Isik, R. Gracia, L. C. Kollnus, L. C. Tomé, I. M. Marrucho, D. Mecerreyes, ACS Macro Lett. 2013, 2, 975; f) M. M. Obadia, B. P. Mudraboyina, A. Serghei, D. Montarnal, E. Drockenmuller, J. Am. Chem. Soc. 2015, 137, 6078; g) J. L. Freyer, S. D. Brucks, G. S. Gobieski, S. T. Russell, C. E. Yozwiak, M. Sun, Z. Chen, Y. Jiang, J. S. Bandar, B. R. Stockwell, T. H. Lambert, L. M. Campos, Angew. Chem., Int. Ed. 2016, 55, 12382.
- 19a) R. Marcilla, E. Ochoteco, C. Pozo-Gonzalo, H. Grande, J. A. Pomposo, D. Mecerreyes, Macromol. Rapid Commun. 2005, 26, 1122; b) M. Döbbelin, R. Tena-Zaera, R. Marcilla, J. Iturri, S. Moya, J. A. Pomposo, D. Mecerreyes, Adv. Funct. Mater. 2009, 19, 3326; c) P. Pincus, Macromolecules 1991, 24, 2912.
- 20a) T. Welton, Chem. Rev. 1999, 99, 2071; b) F. Yan, J. Texter, Chem. Commun. 2006, 25, 2696; c) H. L. Ricks-Laskoski, A. W. Snow, J. Am. Chem. Soc. 2006, 128, 12402; d) C. Thiot, M. Schmutz, A. Wagner, C. Mioskowski, Angew. Chem., Int. Ed. 2006, 45, 2868.
- 21a) S. Y. Zhang, Q. Zhuang, M. Zhang, H. Wang, Z. Gao, J. K. Sun, J. Yuan, Chem. Soc. Rev. 2020, 49, 1726; b) K. Zhang, X. Feng, C. Ye, M. A. Hempenius, G. J. Vancso, J. Am. Chem. Soc. 2017, 139, 10029. c) W. Xu, P. A. Ledin, V. V. Shevchenko, V. V. Tsukruk, ACS Appl. Mater. Interfaces. 2015, 7, 12570; d) L. Li, W. Li, X. Wang, X. Zou, S. Zheng, Z. Liu, Q. Li, Q. Xia, F. Yan, Angew. Chem., Int. Ed. 2022, 61, e2022125; e) J. Lua, F. Yan, J. Texter, Prog. Polym. Sci. 2009, 34, 431.
- 22S. J. D. Lugger, D. J. Mulder, A. P. H. J. Schenning, Angew. Chem., Int. Ed. 2022, 61, e202115166.
- 23a) P. A. Hunt, C. R. Ashworth, R. P. Matthews, Chem. Soc. Rev. 2015, 44, 1257; b) Y. Shao, Y. L. Wang, X. Li, A. K. Kheirabad, Q. Zhao, J. Yuan, H. Wang, Angew. Chem., Int. Ed. 2020, 59, 17187; c) Y. L. Wang, B. Li, S. Sarman, F. Mocci, Z. Y. Lu, J. Yuan, A. Laaksonen, M. D. Fayer, Chem. Rev. 2020, 120, 5798; d) N. Sieffert, G. Wipff, J. Phys. Chem. B 2006, 110, 13076.
- 24a) Y. Shao, Y. L. Wang, Z. Tang, Z. Wen, C. Chang, C. Wang, D. Sun, Y. Ye, D. Qiu, Y. Ke, F. Liu, Z. Yang, Angew. Chem., Int. Ed. 2022, 61, e202205183; b) Y. Shu, L. Han, X. Wang, X. Chen, J. Wang, ACS Appl. Mater. Interfaces 2013, 5, 12156; c) J. Zhang, Q. Zhang, F. Shi, S. Zhang, B. Qiao, L. Liu, Y. Ma, Y. Deng, Chem. Phys. Lett. 2008, 461, 229; d) T. Singh, A. Kumar, J. Phys. Chem. B. 2008, 112, 4079.
- 25B. Wang, C. Qiao, Y. L. Wang, X. Dong, W. Zhang, Y. Lu, J. Yuan, H. Zeng, H. Wang, ACS Nano. 2023, 17, 5871.
- 26J. H. Bernstein, E. Filippidi, J. Herbert Waite, M. T. Valentine, Soft Matter. 2020, 16, 9339.
- 27a) Y. Zhao, S. Song, X. Ren, J. Zhang, Q. Lin, Y. Zhao, Chem. Rev. 2022, 122, 5604; b) H. Yuk, C. E. Varela, C. S. Nabzdyk, X. Mao, R. F. Padera, E. T. Roche, X. Zhao, Nature 2019, 575, 169; c) M. Kim, J. Park, K. M. Lee, E. Shin, S. Park, J. Lee, C. Lim, S. K. Kwak, D. W. Lee, B. S. Kim, J. Am. Chem. Soc. 2022, 144, 6261; d) J. Deng, H. Yuk, J. Wu, C. E. Varela, X. Chen, E. T. Roche, C. F. Guo, X. Zhao, Nat. Mater. 2021, 20, 229. e) J. Chen, Q. Peng, X. Peng, H. Zhang, H. Zeng, Chem. Rev. 2022, 122, 14594.