Characterization and Properties of Polylactic Acid/Cottonseed Protein Bioplastics
Yanli Jiang
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorPeng Yan
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorLingwei Mai
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorHai Liu
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorXiaobo Liu
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorChufen Yang
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200 China
Search for more papers by this authorJinping Peng
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200 China
Search for more papers by this authorCorresponding Author
Hangbo Yue
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200 China
E-mail: [email protected]
Search for more papers by this authorYanli Jiang
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorPeng Yan
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorLingwei Mai
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorHai Liu
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorXiaobo Liu
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorChufen Yang
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200 China
Search for more papers by this authorJinping Peng
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200 China
Search for more papers by this authorCorresponding Author
Hangbo Yue
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200 China
E-mail: [email protected]
Search for more papers by this authorAbstract
In this study, polylactic acid (PLA) is compounded with cottonseed protein concentrate (CPC) by melt blending under the compatibilization of maleic anhydride (MA), and then hot-pressed to prepare PLA/CPC composite bioplastics. The attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy showed that high temperature and compatibilizer induced the protein secondary structure to transition. CPC can be used as a heterogeneous PLA nucleating agent, effectively accelerating PLA crystallization, which is characterized by polarization optical microscopy (POM), synchrotron radiation wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC). The highest crystallinity of the PLA/CPC10 composite is 8.9% higher than that of neat PLA. The unfolding of the protein secondary structure is likely to promote an orderly arrangement of PLA crystals, showing strong binding forces between them. Moreover, the CPC/PLA interfacial compatibility is improved by the addition of a small amount of maleic anhydride. The increased crystallinity and interfacial compatibility contribute to the improved mechanical properties, water resistance, and thermal stability of the bioplastics. Environmentally friendly plastic handicrafts (e.g., commemorative emblems, flower pots, ornaments, etc.) can be fabricated using these biocomposites for future value-added applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
macp202400191-sup-0001-SuppMat.docx264 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. Laskar, U. Kumar, Environ. Technol. Innovat. 2019, 14, 100352.
- 2W. Ali, H. Ali, S. Souissi, P. Zinck, Environ. Chem. Lett. 2023, 21, 1991.
- 3A. R. Othman, H. Abu Hasan, M. H. Muhamad, N. I. Ismail, S. R. S. Abdullah, Environ. Chem. Lett. 2021, 19, 3057.
- 4T. Mekonnen, P. Mussone, H. Khalil, D. Bressler, J. Mater. Chem. A 2013, 1, 13379.
- 5W. Leal, A. L. Salvia, A. Bonoli, U. A. Saari, V. Voronova, M. Kloga, S. S. Kumbhar, K. Olszewski, D. M. De Quevedo, J. Barbir, Sci. Total Environ. 2021, 755, 142732.
- 6 Bioplastics Market Development Update 2023, European Bioplastics, Berlin, Germany 2023.
- 7M. Karamanlioglu, R. Preziosi, G. D. Robson, Polym. Degrad. Stab. 2017, 137, 122.
- 8S. Nanda, B. R. Patra, R. Patel, J. Bakos, A. K. Dalai, Environ. Chem. Lett. 2022, 20, 379.
- 9R. Nandhini, B. Sivaprakash, N. Rajamohan, D. V. N. Vo, Environ. Chem. Lett. 2023, 21, 403.
- 10J. Kuang, J. H. Wang, Y. Bai, Y. C. Li, Eur. Polym. J. 2019, 121, 109286.
- 11M. Niaounakis, E. Kontou, S. Pispas, M. Kafetzi, D. Giaouzi, Polym. Eng. Sci. 2019, 59, E432.
- 12Z. Q. Li, L. Liu, Y. Rao, L. C. Ran, T. Wu, R. Nie, D. Anna, Y. L. Li, Z. M. Che, Polym. Eng. Sci. 2019, 59, 2121.
- 13T. Tabi, T. Ageyeva, J. G. Kovacs, Mater. Today Commun. 2022, 32, 103936.
- 14X. H. Gong, L. Pan, C. Y. Tang, L. Chen, C. Q. Li, C. G. Wu, W. C. Law, X. T. Wang, C. P. Tsui, X. L. Xie, Compos. Part B-Eng. 2016, 91, 103.
- 15P. Chen, K. S. Yu, Y. Q. Wang, W. B. Wang, H. F. Zhou, H. Q. Li, J. G. Mi, X. D. Wang, J. Polym. Environ. 2018, 26, 3718.
- 16A. P. Mathew, K. Oksman, M. Sain, J. Appl. Polym. Sci. 2005, 97, 2014.
- 17S. Barrau, C. Vanmansart, M. Moreau, A. Addad, G. Stoclet, J. M. Lefebvre, R. Seguela, Macromolecules 2011, 44, 6496.
- 18X. Z. Zhang, J. X. Shi, J. Zhou, J. W. Nan, Polym. Bull. 2022, 79, 5481.
- 19M. Aouay, A. Magnin, J. L. Putaux, S. Boufi, Int. J. Biol. Macromol. 2022, 218, 588.
- 20N. Wang, C. Zhang, Y. Weng, J. Appl. Polym. Sci. 2021, 138, 50199.
- 21L. J. Li, H. B. Yue, Q. Q. Wu, J. P. Fernandez-Blazquerz, P. S. Shuttleworth, J. H. Clark, J. W. Guo, Compos. Sci. Technol. 2022, 225, 109480.
10.1016/j.compscitech.2022.109480 Google Scholar
- 22Y. Chen, L. N. Zhang, L. B. Du, Ind. Eng. Chem. Res. 2003, 42, 6786.
- 23W. J. Chen, J. Ding, X. M. Yan, W. Yan, M. He, G. Q. Yin, Polym.-Basel 2019, 11, 2096.
- 24 Oilseeds: World Markets and Trade, United States Department of Agriculture, 2024869.
- 25M. Kumar, M. Tomar, S. Punia, S. Grasso, F. Arrutia, J. Choudhary, S. Singh, P. Verma, A. Mahapatra, S. Patil, Radha, S. D., J. Potkule, S. Saxena, R. Amarowicz, Trends Food Sci. Tech. 2021, 111, 100.
- 26H. B. Yue, Y. D. Cui, P. S. Shuttleworth, J. H. Clark, Green Chem. 2012, 14, 2009.
- 27G. E. A. Verginio, T. L. D. Montanheiro, L. S. Montagna, J. Marini, F. R. Passador, J. Appl. Polym. Sci. 2021, 138, 50087.
- 28T. L. D. Montanheiro, F. R. Passador, M. P. de Oliveira, N. Durán, A. P. Lemes, Mater. Res.-Ibero-Am. J. 2016, 19, 229.
- 29H. B. Yue, C. Xu, J. C. Yao, M. He, G. Q. Yin, Y. D. Cui, C. F. Yang, J. W. Guo, Cellulose 2022, 29, 5869.
- 30C. Mortalò, P. Russo, E. Miorin, V. Zin, E. Paradisi, C. Leonelli, Polymer 2023, 282, 126162.
- 31S. Wasti, E. Triggs, R. Farag, M. Auad, S. Adhikari, D. Bajwa, M. Li, A. J. Ragauskas, Compos. Part B-Eng. 2021, 205, 108483.
- 32X. H. Ge, X. Y. Huang, L. P. Zhou, Y. Wang, Food Packag. Shelf 2022, 34, 100977.
- 33T. R. Arruda, P. C. Bernardes, A. R. F. E. Moraes, C. S. Marques, P. F. Pinheiro, T. V. de Oliveira, S. O. Ferreira, E. A. A. Naves, N. D. F. Soares, Int. J. Biol. Macromol. 2023, 228, 23.
- 34N. Mohamad, M. M. Mazlan, I. S. M. A. Tawakkal, R. A. Talib, L. K. Kian, H. Fouad, M. Jawaid, Int. J. Biol. Macromol. 2020, 163, 1451.
- 35E. F. Sucinda, M. S. A. Majid, M. J. M. Ridzuan, E. M. Cheng, H. A. Alshahrani, N. Mamat, Int. J. Biol. Macromol. 2021, 187, 43.
- 36M. Carbonaro, A. Nucara, Amino Acids 2010, 38, 679.
- 37S. D. He, J. Shi, E. Walid, H. W. Zhang, Y. Ma, S. J. Xue, Food Chem. 2015, 166, 93.
- 38Z. K. Wei, Z. M. Liu, X. W. Fu, Y. C. Wang, A. Q. Yuan, J. X. Lei, Eur. Polym. J. 2021, 157, 110647.
- 39A. Waisarikit, S. Ross, G. M. Ross, S. Mahasaranon, Polym.-Plast. Tech. Mat 2023, 62, 1684.
- 40J. Li, Y. X. Wang, J. Lin, Y. Liu, G. L. Wang, D. Quan, Y. J. Guan, G. Q. Zhao, S. C. Ji, J. Clean Prod. 2023, 425, 138952.
- 41Z. Y. Wei, S. N. Shao, M. L. Sui, P. Song, M. M. He, Q. Hu, X. F. Leng, Y. S. Wang, Y. Li, Eur. Polym. J. 2019, 118, 337.
- 42K. Shi, G. S. Liu, H. Sun, B. Yang, Y. X. Weng, Polym.-Basel 2022, 14, 4305.
- 43S. P. Qian, H. H. Zhang, W. C. Yao, K. C. Sheng, Comp. Part B-Eng. 2018, 133, 203.
- 44H. H. Zhang, S. J. Wang, S. Y. Zhang, R. X. Ma, Y. M. Wang, W. Cao, C. T. Liu, C. Y. Shen, Polym. Test. 2017, 64, 12.
- 45H. L. Mao, P. J. Pan, G. R. Shan, Y. Z. Bao, J. Phys. Chem. B 2015, 119, 6471.
- 46C. C. Chen, J. Y. Chueh, H. Tseng, H. M. Huang, S. Y. Lee, Biomaterials 2003, 24, 1167.
- 47P. Gong, Y. X. Zhao, K. Li, H. F. Tian, C. M. Li, J. Polym. Environ. 2022, 30, 562.
- 48Y. Baimark, W. Rungseesantivanon, N. Prakymoramas, Mater. Today Commun. 2022, 33, 104539.
- 49H. W. Pan, J. J. Kong, Y. J. Chen, H. L. Zhang, L. S. Dong, Int. J. Biol. Macromol. 2019, 122, 848.
- 50H. Kang, D. S. Kim, Polym. Comp. 2023, 44, 7727.
- 51R. O. Okpuwhara, B. O. Oboirien, E. R. Sadiku, Polym. Eng. Sci. 2022, 62, 1571.
- 52Y. T. Shieh, G. L. Liu, J. Polym. Sci. Pol. Phys. 2007, 45, 1870.
- 53D. V. Cong, T. Hoang, N. V. Giang, N. T. Ha, T. D. Lam, M. Sumita, Mat. Sci. Eng. C-Mater. 2012, 32, 558.
- 54M. Q. Wei, Q. B. Li, T. Jiang, H. Q. Ding, X. H. Wu, Y. F. Zhang, X. F. Wang, Mater. Today Commun. 2023, 34, 105278.
- 55D. F. Zou, X. Zheng, Y. P. Ye, D. Yan, H. Xu, S. Si, X. G. Li, Int. J. Biol. Macromol. 2022, 216, 456.
- 56L. He, F. Song, D. F. Li, X. Zhao, X. L. Wang, Y. Z. Wang, ACS Sustain. Chem. Eng. 2020, 8, 1573.
- 57H. B. Li, M. A. Huneault, Polymer 2007, 48, 6855.
- 58Y. M. Ma, Y. Jilili, T. F. Shao, W. J. Zhen, Int. J. Biol. Macromol. 2024, 254, 127676.
- 59S. S. Wang, L. Zhang, K. Semple, M. Zhang, W. B. Zhang, C. P. Dai, Polym.-Basel 2020, 12, 2217.
- 60A. N. M. M. Rahman, X. P. Zhang, X. H. Qin, M. M. A. Sayeed, S. R. Islam, Polym. Comp. 2023, 44, 8819.
- 61Z. F. Cheng, L. L. Lei, B. B. Zhao, Y. F. Zhu, T. Yu, W. D. Yang, Y. Li, Compos. Sci. Technol. 2023, 240, 110091.
- 62A. Marra, C. Silvestre, D. Duraccio, S. Cimmino, Int. J. Biol. Macromol. 2016, 88, 254.
- 63X. Dai, Y. Cao, X. W. Shi, X. L. Wang, RSC Adv. 2016, 6, 71461.
- 64A. Biswas, H. N. Cheng, G. Kuzniar, Z. Q. He, S. Kim, R. F. Furtado, C. R. Alves, B. K. Sharma, Polym.-Basel 2023, 15, 1425.
- 65X. G. Li, Q. Yang, K. Zhang, L. S. Pan, Y. H. Feng, Y. F. Jia, N. Xu, J. Clean Prod. 2022, 375, 134097.
- 66A. González, C. I. A. Igarzabal, Food Hydrocoll. 2013, 33, 289.
- 67A. Todorovic, Y. Blössl, G. Oreski, K. Resch-Fauster, Comp. Part A-Appl. S 2022, 152, 106666.
- 68K. Li, C. M. Clarkson, L. Wang, Y. Liu, M. Lamm, Z. Q. Pang, Y. B. Zhou, J. Qian, M. Tajvidi, D. J. Gardner, H. Tekinalp, L. B. Hu, T. Li, A. J. Ragauskas, J. P. Youngblood, S. Ozcan, ACS Nano 2021, 15, 3646.
- 69Y. F. Zuo, K. Chen, P. Li, X. Y. He, W. H. Li, Y. Q. Wu, Int. J. Biol. Macromol. 2020, 157, 177.
- 70M. He, B. N. Zhang, Y. Dou, G. Q. Yin, Y. D. Cui, J. Appl. Polym. Sci. 2017, 134, 44680.
- 71P. H. Sun, S. H. Wang, Z. Huang, L. Zhang, F. H. Dong, X. Xu, H. Liu, Green Chem. 2022, 24, 7519.
- 72S. Guo, Z. Zhou, S. L. Yu, Z. B. Chen, H. X. Xiang, M. F. Zhu, Int. J. Biol. Macromol. 2023, 226, 1579.
- 73L. Aliotta, P. Cinelli, M. B. Coltelli, M. C. Righetti, M. Gazzano, A. Lazzeri, Eur. Polym. J. 2017, 93, 822.
- 74Z. Z. Gu, Y. Xu, Q. Q. Lu, C. J. Han, R. J. Liu, Z. P. Zhou, T. F. Hao, Y. J. Nie, Phys. Chem. Chem. Phys. 2019, 21, 6443.