Effect of Different Electrolytes on the Supercapacitor Behavior of Single and Multilayered Electrode Materials Based on Multiwalled Carbon Nanotube/Polyaniline Composite
Sowmya Holla
Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104 Karnataka, India
Search for more papers by this authorCorresponding Author
Muthu Selvakumar
Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104 Karnataka, India
E-mail: [email protected]Search for more papers by this authorSowmya Holla
Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104 Karnataka, India
Search for more papers by this authorCorresponding Author
Muthu Selvakumar
Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104 Karnataka, India
E-mail: [email protected]Search for more papers by this authorAbstract
In the present study, the electropolymerization (template synthesis) and then fabrication of symmetrical supercapacitors based on single and multilayered multiwalled carbon nanotube/polyaniline (MWCNT/PA) is achieved. It is found that the morphology and capacitance values depend strongly on the nature and concentration of electrolytes. The presence of micro and mesopores on the MWCNTs provides the space for the deposition of PA on them. The extended conjugation results due to the overlapping of π electron cloud of sp2 hybridized carbon network of MWCNT with quinoid rings of three layers of PA doped with three dopants. This leads to the highest capacitance of 333 F g−1 and good charge–discharge cycling behavior with 85% charge retention at 1000 cycles for the symmetrical supercapacitor based on the multilayered composite material.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1R. H. Baughman, A. A. Zakhidov, W. A. De Heer, Science 2002, 297, 787.
- 2M. Kociak, A. Y. Kasumov, S. Guéron, B. Reulet, I. I. Khodos, Y. B. Gorbatov, V. T. Volkov, L. Vaccarini, H. Bouchiat, Phys. Rev. Lett. 2001, 86, 2416.
- 3A. G. Rinzler, J. H. Hafner, P. Nikolaev, P. Nordlander, D. T. Colbert, R. E. Smalley, L. Lou, S. G. Kim, D. Tomanek, Science 1995, 269, 1550.
- 4J. H. Kim, K.-W. Nam, S. B. Ma, K. B. Kim, Carbon 2006, 44, 1963.
- 5J. Zhang, L.-B. Kong, B. Wang, Y.-C. Luo, L. Kang, Synth. Met. 2009, 159, 260.
- 6E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin, Carbon 2005, 43, 786.
- 7G. A. Snook, P. Kao, A. S. Best, J. Power Sources 2011, 196, 1.
- 8A. Eftekhari, L. Li, Y. Yang, J. Power Sources 2017, 347, 86.
- 9J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, ACS Nano 2010, 4, 5019.
- 10Y. Zhao, H. Wei, M. Arowo, X. Yan, W. Wu, J. Chen, Y. Wang, Z. Guo, Phys. Chem. Chem. Phys. 2015, 17, 1498.
- 11D. Li, J. Huang, R. B. Kaner, Acc. Chem. Res. 2009, 42, 135.
- 12B. T. Raut, M. A. Chougule, A. A. Ghanwat, R. C. Pawar, C. S. Lee, V. B. Patil, J. Mater. Sci. Mater. Electron. 2012, 23, 2104.
- 13Y. Ma, C. Hou, H. Zhang, M. Qiao, Y. Chen, H. Zhang, Q. Zhang, Z. Guo, J. Mater. Chem. A 2017, 5, 14041.
- 14K. V. Sankar, D. Kalpana, R. K. Selvan, J. Appl. Electrochem. 2012, 42, 463.
- 15V. Khomenko, E. Frackowiak, F. Béguin, Electrochim. Acta 2005, 50, 2499.
- 16U. Male, B. K. Shin, Macromol. Res. 2017, 25, 1121.
- 17L. Pan, H. Qiu, C. Dou, Y. Li, L. Pu, J. Xu, Y. Shi, Int. J. Mol. Sci. 2010, 11, 2636.
- 18S. Bhandari, D. Khastgir, Polymer 2015, 81, 62.
- 19G. Wu, P. Tan, D. Wang, Z. Li, L. Peng, Y. Hu, C. Wang, W. Zhu, S. Chen, W. Chen, Sci. Rep. 2017, 7, 43676.
- 20M. Ginic-Markovic, J. G. Matisons, R. Cervini, G. P. Simon, P. M. Fredericks, Chem. Mater. 2006, 18, 6258.
- 21Y.-K. Zhou, B.-L. He, W.-J. Zhou, H.-L. Li, J. Electrochem. Soc. 2004, 151, A1052.
- 22W. Mengqiang, Z. Liping, W. Dongmei, G. Jiahui, Z. Shuren, Nanotechnology 2007, 18, 385603.
- 23D.-J. Guo, H.-L. Li, J. Solid State Electrochem. 2005, 9, 445.
- 24C. Peng, S. Zhang, D. Jewell, G. Z. Chen, Prog. Nat. Sci. 2008, 18, 777.
- 25N. Ferrer-Anglada, M. Kaempgen, S. Roth, Phys. Status Solidi B 2006, 243, 3519.
- 26C. Peng, J. Jin, G. Z. Chen, Electrochim. Acta 2007, 53, 525.
- 27D. Aradilla, F. Estrany, C. Alemán, J. Phys. Chem. C 2011, 115, 8430.
- 28F. Estrany, D. Aradilla, R. Oliver, C. Alemán, Eur. Polym. J. 2007, 43, 1876.
- 29S. Biswas, L. T. Drzal, ACS Appl. Mater. Interfaces 2010, 2, 2293.
- 30H. Sowmya, Y. N. Sudhakar, M. Selvakumar, Ionics 2016, 22, 1729.
- 31H. Sowmya, M. Selvakumar, Int. J. Hydrogen Energy 2018, 43, 4067.
- 32D. K. Smith, D. C. Lee, B. A. Korgel, Chem. Mater. 2006, 18, 3356.
- 33C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett. 1997, 70, 1480.
- 34H. Topallar, B. Karadag, J. Surfactants Deterg. 1998, 1, 49.
- 35X. Zhang, J. Zhang, Z. Liu, Carbon 2005, 43, 2186.
- 36T. Chakraborty, I. Chakraborty, S. Ghosh, Arabian J. Chem. 2011, 4, 265.
- 37B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Kluwer Academic/Plenum Press, New York 1999.
- 38D. K. Bhat, M. S. Kumar, J. Mater. Sci. 2007, 42, 8158.
- 39Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 2010, 4, 1963.
- 40Y. Sudhakar, H. Hemant, S. Nitinkumar, P. Poornesh, M. Selvakumar, Ionics 2017, 23, 1267.
- 41S.-Y. Lee, J.-I. Kim, S.-J. Park, Energy 2014, 78, 298.
- 42T. Chen, L. Dai, Mater. Today 2013, 16, 272.
- 43L. N. Jin, F. Shao, C. Jin, J. N. Zhang, P. Liu, M. X. Guo, S. W. Bian, Electrochim. Acta 2017, 249, 387.
- 44B. S. Singu, U. Male, P. Srinivasan, K. R. Yoon, J. Ind. Eng. Chem. 2017, 49, 82.
- 45F. Zhao, A. Vicenzo, M. Hashempour, M. Bestetti, Electrochim. Acta 2014, 150, 35.
- 46X. Zhang, L. Ji, S. Zhang, W. Yang, J. Power Sources 2007, 173, 1017.
- 47K. S. Ryu, Y.-G. Lee, K. M. Kim, Y. J. Park, Y.-S. Hong, X. Wu, M. G. Kang, N.-G. Park, R. Y. Song, J. M. Ko, Synth. Met. 2005, 153, 89.
- 48B. Dong, B.-L. He, C.-L. Xu, H.-L. Li, Mater. Sci. Eng. B 2007, 143, 7.
- 49E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Béguin, J. Power Sources 2006, 153, 413.
- 50M. Hughes, G. Z. Chen, M. S. P. Shaffer, D. J. Fray, A. H. Windle, Chem. Mater. 2002, 14, 1610.
- 51K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, Y. H. Lee, J. Electrochem. Soc. 2002, 149, A1058.
- 52K. Lota, V. Khomenko, E. Frackowiak, J. Phys. Chem. Solids 2004, 65, 295.
- 53A. K. Sarker, J.-D. Hong, Langmuir 2012, 28, 12637.
- 54I. M. De la Fuente Salas, Y. N. Sudhakar, M. Selvakumar, Appl. Surf. Sci. 2014, 296, 195.
- 55G. Ma, Z. Wang, B. Gao, T. Ding, Q. Zhong, X. Peng, J. Su, B. Hu, L. Yuan, P. K. Chu, J. Zhou, K. Huo, J. Mater. Chem. A 2015, 3, 14617.