Enhancing the Colloidal Stability and Electrical Conductivity of Single-Walled Carbon Nanotubes Dispersed in Water
Rinky D. Devre
Department of Plastics Engineering and NSF Center for High-Rate Nanomanufacturing, University of Massachusetts, Lowell, MA, 01854 USA
Search for more papers by this authorCorresponding Author
Bridgette M. Budhlall
Department of Plastics Engineering and NSF Center for High-Rate Nanomanufacturing, University of Massachusetts, Lowell, MA, 01854 USA
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Carol F. Barry
Department of Plastics Engineering and NSF Center for High-Rate Nanomanufacturing, University of Massachusetts, Lowell, MA, 01854 USA
E-mail: [email protected], [email protected]Search for more papers by this authorRinky D. Devre
Department of Plastics Engineering and NSF Center for High-Rate Nanomanufacturing, University of Massachusetts, Lowell, MA, 01854 USA
Search for more papers by this authorCorresponding Author
Bridgette M. Budhlall
Department of Plastics Engineering and NSF Center for High-Rate Nanomanufacturing, University of Massachusetts, Lowell, MA, 01854 USA
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Carol F. Barry
Department of Plastics Engineering and NSF Center for High-Rate Nanomanufacturing, University of Massachusetts, Lowell, MA, 01854 USA
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
In this article, the results of a focused systematic investigation of the nature, type, and concentration of cationic and anionic surfactants and proteins required to simultaneously disperse single-walled carbon nanotubes (SWNTs) and enhance their electrical conductivities in water are presented. The dispersibility of SWNTs suspended in aqueous solutions is evaluated via light scattering to characterize the average particle size, particle size dispersion, electrophoretic mobility, and ζ-potential of the dispersions. It is found that the colloidal stability of SWNT dispersions is influenced by the surfactant charge and concentration – i.e., above or below its critical micelle concentration and for proteins its charge. The amphiphilicity, concentration, and charge of the surfactant or protein determine their surface coverage on the SWNT and simultaneously increase electrostatic and steric repulsion and decrease surface chemical heterogeneity. It is found that the electrical conductivities of SWNT films stabilized with surfactant are as high as that without surfactants, with the added advantage of being homogeneously dispersed in water with significant enhancement in the long-term stability of the nanotubes in water. These findings suggest that enhancement of the electrical properties of SWNTs requires selection of a surfactant that has strong adsorption, and thus strong interactions with the nanotube – i.e., π–π stacking – and using concentrations above the CMC. Overall, these results demonstrate the importance of understanding the structure/property relationships between SWNTs and their dispersants in order to achieve high colloidal stability and electrical conductivities.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
macp201500408-sup-0001-S1.pdf1.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Vaisman, H. D. Wagner, G. Marom, Adv. Colloid Interface Sci. 2006, 128, 37.
- 2L. Valentini, I. Armentano, J. M. Kenny, C. Cantalini, L. Lozzi, S. Santucci, Appl. Phys. Lett. 2003, 82, 961.
- 3H. Chang, J. D. Lee, S. M. Lee, Y. H. Lee, Appl. Phys. Lett. 2001, 79, 3863.
- 4S. Peng, K. Cho, Nano Lett. 2003, 3, 513.
- 5J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Nano Lett. 2003, 3, 929.
- 6K. H. An, W. S. Kim, Y. S. Park, J. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee, Adv. Funct. Mater. 2001, 11, 387.
- 7R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 1999, 284, 1340.
- 8R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787.
- 9S. Wang, Q. Zhang, R. Wang, S. Yoon, Biochem. Biophys. Res. Commun. 2003, 311, 572.
- 10J. Wang, M. Musameh, Anal. Chem. 2003, 75, 2075.
- 11A. Ansón-Casaos, R. Mis-Fernández, C. M. López-Alled, E. Almendro-López, J. Hernández-Ferrer, J. M. González-Domínguez, M. T. Martínez, Chem. Eng. Sci. 2015, 138, 566.
- 12N. T. Taipei, J. Tsai, DIGITIMES, 16 July 2014.
- 13A. Windle, Faraday Discuss. 2014, 173, 445.
- 14J. D. Leeds, J. T. Fourkas, Y. Wang, Small 2013, 9, 241.
- 15R. B. Weisman, S. M. Bachilo, D. Tsyboulski, Appl. Phys. A: Mater. Sci. Process. 2004, 78, 1111.
- 16R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Nano Lett., 2002, 2, 25.
- 17M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, R. E. Smalley, Science 2002, 297, 593.
- 18J. Y. Lee, J. S. Kim, A. K. Hyeok, K. Lee, D. Y. Kim, D. J. Bae, Y. H. Lee, J. Nanosci. Nanotechnol. 2005, 5, 1045.
- 19E. J. F. Carvalho, M. C. dos Santos, ACS Nano 2010, 4, 765.
- 20O. Matarredona, H. Rhoads, Z. Li, J. H. Harwell, L. Balzano, D. E. Resasco, J. Phys. Chem. B 2003, 107, 13357.
- 21B. Gao, G. Z. Yue, Q. Qiu, Y. Cheng, H. Shimoda, L. Fleming, O. Zhou, Adv. Mater. 2001, 13, 1770.
- 22J. Li, Q. Zhang, H. Li, M. B. Chan-Park, Nanotechnology 2006, 17, 668.
- 23S. G. Wang, Q. Zhang, D. J. Yang, P. J. Sellin, G. F. Zhong, Diamond Relat. Mater. 2004, 13, 1327.
- 24J. Suehiro, G. Zhou, M. Hara, J. Phys. D: Appl. Phys. 2003, 36, L109.
- 25O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey, C. A. Grimes, Sens. Actuators, B 2001, 81, 32.
- 26B. C. F. Bonalume, G. W. Lebrão, J. L. Rossi, 16th Int. Conf. Comp. Struct.(ICCS16), Faculty of Engineering of the University of Porto (FEUP), Porto, Portugal 2011, p. 1.
- 27C. Backes, A. Hirsch, Noncovalent Functionalization of Carbon Nanotubes. Chemistry of Nanocarbons (Eds: T. Akasaka, F. Wudl, S. Nagase), John Wiley & Sons, Ltd, Chichester, UK 2010, pp. 1–48.
10.1002/9780470660188.ch1 Google Scholar
- 28R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, L. M. Bharadwaj, J. Colloid Interface Sci. 2008, 328, 421.
- 29C.-Y. Hu, Y.-J. Xu, S.-W. Duo, R.-F. Zhang, M.-S. Li, J. Chin. Chem. Soc. 2009, 56, 234.
- 30P. W. Barone, S. Baik, D. A. Heller, M. S. Strano, Nat. Mater. 2005, 4, 86.
- 31J. Tkac, T. Ruzgas, Electrochem. Commun. 2006, 8, 899.
- 32C.-X. Liu, J.-W. Choi, Nanomaterials 2012, 2, 329.
- 33J. Glory, A. Mierczynska, M. Pinault, M. Mayne-L'Hermite, C. Reynaud, J. Nanosci. Nanotechnol. 2007, 7, 3458.
- 34J. C. Goak, S. H. Lee, J. H. Han, S. H. Jang, K. B. Kim, Y. Seo, Y.-S. Seo, N. Lee, Carbon 2011, 49, 4301.
- 35S. L. Ruan, P. Gao, X. G. Yang, T. X. Yu, Polymer 2003, 44, 5643.
- 36Q. Cheng, S. Debnath, E. Gregan, H. J. Byrne, J. Phys. Chem. C 2010, 114, 8821.
- 37R. Tortorich, J.-W. Choi, Nanomaterials 2013, 3, 453.
- 38M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, A. G. Yodh, Nano Lett. 2003, 3, 269.
- 39J. R. Rocha, S. M. Bachilo, S. Ghosh, S. Arepalli, R. B. Weisman, Anal. Chem., 2011, 83, 7431.
- 40J.-Y. Shin, T. Premkumar, K. E. Geckeler, Chem. Eur. J. 2008, 14, 6044.
- 41D. Bouchard, W. Zhang, T. Powell, U.-S. Rattanaudompol, Environ. Sci. Technol. 2012, 46, 4458.
- 42R. P. Tortorich, E. Song, J.-W. Choi, J. Electrochem. Soc. 2014, 161, B3044.
- 43B. White, S. Banerjee, S. O'Brien, N. J. Turro, I. P. Herman, J. Phys. Chem. C 2007, 111, 13684.
- 44M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, R. Saito, Carbon 2002, 40, 2043.
- 45 HiPco Single-Wall Carbon Nanotubes product literature, http://unidym.net/files/Unidym%20Product%20Sheet%20SWNT_2012_06_13.pdf/, accessed: September 2015.
- 46M. Calvaresi, M. Dallavalle, F. Zerbetto, Small 2009, 5, 2191.
- 47K. Besteman, J.-O. Lee, F. G. M. Wiertz, H. A. Heering, C. Dekker, Nano Lett. 2003, 3, 727.
- 48N. W. S. Kam, H. Dai, J. Am. Chem. Soc. 2005, 127, 6021.
- 49A. K. Pal, D. Bello, B. Budhlall, E. Rogers, D. K. Milton, Dose–Response 2012, 10, 308.
- 50D. E. Graham, M. C. Phillips, J. Colloid Interface Sci. 1978, 70, 403.
- 51P. Bihari, V. Minnamari, S. Schultes, M. Praetner, A. G. Khandoga, C. A. Reichel, C. Coester, T. Tuomi, M. Rehberg, F. Krombach, Part. Fibre Toxicol. 2008, 5, 14.
- 52V. Sa, K. G. Kornev, Langmuir 2011, 27, 13451.
- 53M. von Smoluchowski, Bull. Int. Acad. Sci., 1903, 8, 182.
- 54A. Hurd, D. Schaefer, Phys. Rev. Lett. 1985, 54, 1043.
- 55M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, J. N. Coleman, J. Am. Chem. Soc. 2009, 131, 3611.
- 56H. Brenner, Int. J. Multiphase Flow 1974, 1, 195.
10.1016/0301-9322(74)90018-4 Google Scholar
- 57N. Nair, W.-J. Kim, R. D. Braatz, M. S. Strano, Langmuir 2008, 24, 1790.
- 58R. Alargova, J. Petkov, D. Petsev, I. Ivanov, Langmuir 1995, 11, 1530.
- 59K. Fuwa, B. L. Valle, Anal. Chem. 1963, 35, 942.
- 60V. A. Karachevtseva, A. Glamazdaa, Yu. U. Dettlaff-Weglikowskab, V. S. Kurnosova, E. D. Obraztsova, A. V. Peschanskii, V. V. Eremenko, S. Roth, Carbon 2003, 41, 1567.
- 61S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, R. J. Kalenczuk, Mater. Sci.-Poland 2008, 26, 433.
- 62F. Hennrich, R. Krupke, S. Lebedkin, K. Arnold, R. Fischer, D. E. Resasco, M. M. Kappes, J. Phys. Chem. B 2005, 109, 10567.
- 63K. Bautista, “Thin Film Deposition,” Four-Point Probe Operation, Erik Johnston School of Engineering, The University of Texas, Dallas, TX., 2003, pp. 1–8.
- 64M. J. Rosen, J. T. Kunjappu, Surfactants and Interfacial Phenomena, 4th ed., John Wiley & Sons, Inc, Hoboken, NJ 2012.
- 65M. Suttipong, N. R. Tummala, B. Kitiyanan, A. Striolo, J. Phys. Chem. C 2011, 115, 17286.
- 66A. Q. Shen, B. Gleason, G. H. McKinley, H. A. Stone, Phys. Fluids 2002, 14, 4055.
- 67D. E. Graham, M. C. Phillips, J. Colloid Interface Sci. 1978, 70, 403.
- 68K. J. Stebe, S. Lin, C. Maldarelli, Phys. Fluids A 1991, 3, 3.
- 69E. Dickinson, M. Golding, M. J. W. Povey, J. Colloide Interface Sci. 1997, 185, 515.
- 70R. Haggenmueller, S. S. Rahatekar, J. A. Fagan, J. Chun, M. L. Becker, R. R. Naik, T. Krauss, L. Carlson, J. F. Kadla, P. C. Trulove, D. F. Fox, H. C. DeLong, Z. Fang, S. O. Kelley, J. W. Gilman, Langmuir 2008, 24, 5070.
- 71D. Fennell, H. W. Evans, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, Wiley-VCH, New York 1999.
- 72H. Hu, A. Yu, E. Kim, B. Zhao, M. E. Itkis, M. E. Itkis, E. Bekyarova, R. C. Haddon, J. Phys. Chem. B 2005, 109, 11520.
- 73B. Kim, H. Park, W. M. Sigmund, Langmuir 2003, 19, 2525.
- 74M. Sano, J. Okamura, S. Shinkai, Langmuir 2001, 17, 7172.
- 75L. Jiang, L. Gao, J. Sun, J. Colloid Interface Sci. 2003, 260, 89.
- 76A. A. Mamedov, N. A. Kotov, M. Prato, D. M. Guldi, J. P. Wicksted, A. Hirsch, Nat. Mater. 2002, 1, 190.
- 77L. Zhao, L. Gao, Colloids Surf., A 2003, 224, 127.
- 78J. Pardeike, D. M. Strohmeier, N. Schrödl, C. Voura, M. Gruber, J. G. Khinast, A. Zimmer, Int. J. Pharm. 2011, 420, 93.
- 79E. F. de la Cruz, Y. Zheng, E. Torres, W. Li, W. Song, K. Burugapalli, Int. J. Electrochem. Sci. 2012, 7, 3577.
- 80H. Kato, A. Nakamuraa, M. Horie, RSC Adv. 2014, 4, 2129.
- 81C. Backes, Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water, Springer-Verlag, Berlin 2012.
10.1007/978-3-642-27582-1 Google Scholar
- 82M. J. Rosen, M. Dahanayake, Industrial Utilization of Surfactants: Principles and Practice, 1st ed., AOCS Press, Champaign, IL 2000.
- 83Q. Shi, Y. Zhou, Y. Sun, Biotechnol. Prog. 2005, 21, 516.
- 84Z. Sun, V. Nicolosi, D. Rickard, S. D. Bergin, D. Aherne, J. N. Coleman, J. Phys. Chem. C 2008, 112, 10692.
- 85W. H. Zhong, J. P. Claverie, Carbon 2013, 51, 72.
- 86H. Kato, A. Nakamura, M. Horie, J. Colloid Interface Sci. 2015, 437, 156.
- 87V. Sa, K. G. Kornev, Langmuir 2011, 27, 13451.
- 88C. Richard, F. Balavoine, P. Schultz, T. W. Ebbesen, C. Mioskowski, Science 2003, 300, 775.
- 89K. Yurekli, C. A. Mitchell, R. Krishnamoorti, J. Am. Chem. Soc. 2004, 126, 9902.
- 90P. Angelikopoulos, H. Bock, Phys. Chem. Chem. Phys. 2012, 14, 9546.
- 91N. R. Tummala, A. Striolo, ACS Nano 2009, 3, 595.
- 92N. R. Tummala, B. H. Morrow, D. E. Resasco, A. Striolo, ACS Nano 2010, 4, 7193.
- 93Y. Lian, Y. Maeda, T. Wakahara, T. Akasaka, S. Kazaoui, N. Minami, N. Choi, H. Tokumoto, J. Phys. Chem. B 2003, 107, 12082.
- 94R. M. F. Fernandes, M. Buzaglo, O. Regev, E. F. Marques, I. Furo, J. Phys. Chem. C 2015, 119, 22190.
- 95N. Kakenov, O. Balci, S. Balci, C. Kocabas, Appl. Phys. Lett. 2012, 101, 223114.
- 96M. V. Ivanova, C. Lamprecht, M. J. Loureiro, J. T. Huzil, M. Foldvari, Int. J. Nanomed. 2012, 7, 403.
- 97V. A. Karachevtseva, A. Glamazdaa, Yu. U. Dettlaff-Weglikowskab, V. S. Kurnosova, E. D. Obraztsova, A. V. Peschanskii, V. V. Eremenko, S. Roth, Carbon 2003, 41, 1567.
- 98A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Ünlü, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, R. Saito, Phys. Rev. B 2002, 65, 155412.
- 99T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, R. E. Smalley, Chem. Mater. 2003, 15, 175.
- 100Y. Meng, X.-B. Xu, H. Li, Y. Wang, E.-X. Ding, Z.-C. Zhang, H.-Z. Geng, Carbon 2014, 70, 103.
- 101S. Azoz, L. M. Gilbertson, S. M. Hashmi, P. Han, G. E. Sterbinsky, S. A. Kanaan, J. B. Zimmerman, L. D. Pfefferle, Carbon 2015, 93, 1008.