Revealing the effect of aluminum content on the electrochemical performance of magnesium anodes for aqueous batteries
Jianxin Gao
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
University of Chinese Academy of Sciences, Beijing, China
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Search for more papers by this authorShanshan Gao
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
Search for more papers by this authorCorresponding Author
Erdong Wang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
Correspondence
Erdong Wang, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China.
Email: [email protected]
Search for more papers by this authorYujiang Song
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Search for more papers by this authorGongquan Sun
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
Search for more papers by this authorJianxin Gao
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
University of Chinese Academy of Sciences, Beijing, China
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Search for more papers by this authorShanshan Gao
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
Search for more papers by this authorCorresponding Author
Erdong Wang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
Correspondence
Erdong Wang, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China.
Email: [email protected]
Search for more papers by this authorYujiang Song
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
Search for more papers by this authorGongquan Sun
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
Search for more papers by this authorAbstract
Al is one of the principal alloying elements for Mg anodes. In this study, a series of Mg–Al alloys has been evaluated as anode materials for optimizing the Al addition amount in Mg anodes with the intention of improving the discharge performance in aqueous batteries. The effect of Al content on the discharge potential and corrosion resistance of the Mg anode has been investigated through microstructure characterization, electrochemical measurements in a half-cell, discharge morphology analysis, and Mg–water battery tests. The results show that the Mg–1Al alloy possesses a larger corrosion resistance during discharge, with significant increase of the anode utilization efficiency at 1 and 5 mA/cm2 compared with pure Mg. However, a further increase of Al content does not continuously improve the discharge performance of the Mg anode with the decline of utilization efficiency due to the influence of the precipitated phase. This study contributes to a better understanding about the effect of Al on anodic dissolution and corrosion kinetics of the Mg anode.
Supporting Information
Filename | Description |
---|---|
maco202011692-sup-0001-Supplymentary_material.docx148.9 KB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1S. R. Taylor, Geochim. Cosmochim. Acta 1964, 28, 1273.
- 2M. Deng, D. Höche, S. V. Lamaka, L. Wang, M. L. Zheludkevich, Corros. Sci. 2019, 153, 225.
- 3T. B. Reddy, Linden's Handbook of Batteries, 4th ed., McGraw-Hill, New York, 2011.
- 4Q. Liu, Z. Yan, E. Wang, S. Wang, G. Sun, Int. J. Hydrogen Energy 2017, 42, 23045.
- 5G. Huang, Y. Zhao, Y. Wang, H. Zhang, F. Pan, Mater. Lett. 2013, 113, 46.
- 6X. Zhao, J. Su, G. Li, J. He, S. Chen, G. Wang, A. Liu, Mater. Corros. 2019, 70, 2082.
- 7M. Yuasa, X. Huang, K. Suzuki, M. Mabuchi, Y. Chino, Mater. Trans. 2014, 55, 1202.
- 8X. F. Wan, W. Chen, J. L. Zhou, H. Zhang, F. B. Zhang, K. Q. Wei, Mater. Corros. 2020, 71, 1339.
- 9X. Li, H. Lu, S. Yuan, J. Bai, J. Wang, Y. Cao, Q. Hong, J. Electrochem. Soc. 2017, 164, A3131.
- 10Y. C. Shi, C. Q. Peng, Y. Feng, R. C. Wang, N. G. Wang, Mater. Des. 2017, 124, 24.
- 11Y. C. Shi, C. Q. Peng, Y. Feng, R. C. Wang, N. G. Wang, J. Alloys Compd. 2017, 721, 392.
- 12Y. Feng, W. Xiong, J. Zhang, R. Wang, N. Wang, J. Mater. Chem. A 2016, 4, 8658.
- 13T. Zheng, Y. Hu, Y. Zhang, S. Yang, F., Mater. Des. 2018, 137, 245.
- 14H. Xiong, K. Yu, X. Yin, Y. Dai, Y. Yan, H. Zhu, J. Alloys Compd. 2017, 708, 652.
- 15Y. Lv, M. Liu, Y. Xu, D. Cao, J. Feng, J. Power Sources 2013, 225, 124.
- 16Y. Lv, Y. Xu, D. Cao, J. Power Sources 2011, 196, 8809.
- 17M. C. Lin, C. Y. Tsai, J. Y. Uan, Corros. Sci. 2009, 51, 2463.
- 18A. D. Sudholz, K. Gusieva, X. B. Chen, B. C. Muddle, M. A. Gibson, N. Birbilis, Corros. Sci. 2011, 53, 2277.
- 19K. Gusieva, C. H. J. Davies, J. R. Scully, N. Birbilis, Int. Mater. Rev. 2015, 60, 169.
- 20M. Liu, P. J. Uggowitzer, A. V. Nagasekhar, P. Schmutz, M. Easton, G.-L. Song, A. Atrens, Corros. Sci. 2009, 51, 602.
- 21R. Hahn, J. Mainert, F. Glaw, K. D. Lang, J. Power Sources 2015, 288, 26.
- 22J. S. Lauer, J. F. Jackovitz, E. S. Buzzelli, presented at Proc. 34th Int. Power Sources Symp, IEEE, Cherry Hill, New Jersey, USA, 25-28 June, 1990, pp. 115-117.
- 23G. L. Song, A. Atrens, Adv. Eng. Mater. 1999, 1, 11.
10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 24D. Höche, C. Blawert, S. V. Lamaka, N. Scharnagl, C. Mendis, M. L. Zheludkevich, Phys. Chem. Chem. Phys. 2016, 18, 1279.
- 25B. Vaghefinazari, D. Höche, S. V. Lamaka, D. Snihirova, M. L. Zheludkevich, J. Power Sources 2020, 453, 227880.
- 26M. Mezbahul-Islam, A. O. Mostafa, M. Medraj, J. Mater. 2014, 2014, 1.
10.1155/2014/704283 Google Scholar
- 27G.-L. Song, Corrosion of Magnesium Alloys, Elsevier, Amsterdam, The Netherlands 2011.
- 28G. L. Song, A. Atrens, Adv. Eng. Mater. 2003, 5, 837.
- 29E. Ghali, Corrosion Resistance of Aluminum and Magnesium Alloys: Understanding, Performance, and Testing, John Wiley & Sons, New York, NY 2010.
10.1002/9780470531778 Google Scholar
- 30E. McCafferty, Introduction to Corrosion Science, Springer Science & Business Media, Berlin, Germany 2010.
10.1007/978-1-4419-0455-3 Google Scholar
- 31M. Deng, D. Hoche, S. V. Lamaka, D. Snihirova, M. L. Zheludkevich, J. Power Sources 2018, 396, 109.
- 32M. Deng, L. Q. Wang, D. Hoche, S. V. Lamaka, D. Snihirova, B. Vaghefinazari, M. L. Zheludkevich, J. Power Sources 2019, 441, 12.
- 33M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, New York, NY 2017.
10.1002/9781119363682 Google Scholar
- 34V. Shkirskiy, A. D. King, O. Gharbi, P. Volovitch, J. R. Scully, K. Ogle, N. Birbilis, ChemPhysChem 2015, 16, 536.