Effect of microstructure on discharge performance of Al–0.8Sn–0.05Ga–0.9Mg–1.0Zn (wt%) alloy as anode for seawater-activated battery
Zibin Wu
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
Search for more papers by this authorCorresponding Author
Haitao Zhang
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
Correspondence
Haitao Zhang, Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China.
Email: [email protected]
Search for more papers by this authorJing Zou
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
Search for more papers by this authorKe Qin
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
Search for more papers by this authorChunyan Ban
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
Search for more papers by this authorJianzhong Cui
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
Search for more papers by this authorHiromi Nagaumi
High-Performance Metal Structural Materials Research Institute, Soochow University, Suzhou, Jiangsu, China
Search for more papers by this authorZibin Wu
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
Search for more papers by this authorCorresponding Author
Haitao Zhang
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
Correspondence
Haitao Zhang, Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China.
Email: [email protected]
Search for more papers by this authorJing Zou
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
Search for more papers by this authorKe Qin
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
Search for more papers by this authorChunyan Ban
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
Search for more papers by this authorJianzhong Cui
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
Search for more papers by this authorHiromi Nagaumi
High-Performance Metal Structural Materials Research Institute, Soochow University, Suzhou, Jiangsu, China
Search for more papers by this authorAbstract
The electrochemical performance and discharge behavior of Al–0.8Sn–0.05Ga–0.9Mg–1.0Zn (wt%) alloys in as-cast, homogenized, and annealed states were investigated through electrochemical means, corrosion rate test, and discharge test in a 3.5 wt% NaCl solution. Results suggest that the discharge performance of this alloy is enhanced by rolling and subsequent annealing treatment. This is attributed to the fact that the microstructure of the alloy is greatly improved through rolling and subsequent annealing treatment. The 400°C-annealed alloy exhibits the most excellent discharge activity than alloys in other states, which is due to more regions being activated by a finer and more uniform Sn-rich phase. Furthermore, the anode efficiency of the 400°C-annealed alloy is higher than that of as-cast and homogeneous alloys due to the more uniform distribution of Sn in the aluminum matrix.
REFERENCES
- 1R. Balasubramanian, A. Veluchamy, N. Venkatakrishnan, R. Gangadharan, J. Power Sources 1995, 56, 197.
- 2N. Wang, R. Wang, C. Peng, Y. Feng, Corros. Sci. 2012, 64, 17.
- 3J. Li, Z. Chen, J. Jing, J. Hou, J. Mater. Sci. Technol. 2020, 41, 33.
- 4S. Cheng, W. Cheng, X. Gu, H. Yu, Z. Wang, H. Wang, L. Wang, J. Alloys Compd. 2020, 823, 153779.
- 5X. Wan, W. Chen, J. Zhou, H. Zhang, F. Zhang, K. Wei, Mater. Corros. 2020, 71, 1339.
- 6Z. Li, H. Wang, J. Li, Y. Zhuang, J. Gao, H. Li, W. Cheng, Adv. Eng. Mater. 2020, 22, 1901332.
- 7Q. Xie, A. Ma, J. Jiang, Y. Li, J. Wang, L. Wang, E. E. Klu, Mater. Corros 2020, 71, 1462.
- 8S. Gudić, J. Radošević, I. Smoljko, M. Kliškić, Electrochim. Acta 2005, 50, 5624.
- 9M. Nestoridi, D. Pletcher, R. J. K. Wood, S. Wang, R. L. Jones, K. R. Stokes, I. Wilcock, J. Power Sources 2008, 178, 445.
- 10Z. Xia, W. Zhang, X. Yang, T. Chen, Y. Zhu, H. Ma, L. Li, Mater. Corros. 2020, 71, 585.
- 11R. Liang, Y. Su, X. Sui, D. Gu, G. Huang, Z. Wang, J. Solid State Electrochem. 2019, 23, 53.
- 12E. Senel, K. Nisancioglu, Corros. Sci. 2014, 85, 436.
- 13H. Moghannibavilolyaei, J. Arjomandi, RSC Adv. 2015, 5, 91273.
- 14J. B. Bessone, D. O. Flamini, S. B. Saidman, Corros. Sci. 2005, 47, 95.
- 15Y. Tang, L. Lu, H. W. Roesky, L. Wang, B. Huang, J. Power Sources 2004, 138, 313.
- 16S. Z. E. Abedin, F. Endres, J. Appl. Electrochem. 2004, 34, 1071.
- 17P. R. Birkin, M. Nestoridi, D. Pletcher, Electrochim. Acta 2009, 54, 6668.
- 18S. Gudić, I. Smoljko, M. Kliškić, J. Alloys Compd. 2010, 505, 54.
- 19Z. Wu, H. Zhang, C. Guo, J. Zou, K. Qin, C. Ban, H. Nagaumi, J. Solid State Electrochem. 2019, 23, 2483.
- 20Z. Wu, H. Zhang, J. Zou, X. Shen, K. Qin, C. Ban, J. Cui, H. Nagaumi, J. Alloys Compd. 2020, 827, 154272.
- 21X. Liu, J. Xue, D. Zhang, J. Alloys Compd. 2019, 790, 822.
- 22Z. Ma, X. Li, J. Solid State Electrochem. 2011, 15, 2601.
- 23L. Fan, H. Lu, J. Leng, Electrochim. Acta 2015, 165, 22.
- 24K. D. Ralston, D. Fabijanic, N. Birbilis, Electrochim. Acta 2011, 56, 1729.
- 25M. Srinivasa, S. K. Adapakaa, L. Neelakantan, J. Alloys Compd. 2016, 683, 647.
- 26J. He, J. Wen, X. Li, G. Wang, C. Xu, Trans. Nonferrous Met. Soc. China 2011, 21, 1580.
- 27H. Moghanni-Bavil-Olyaei, J. Arjomandi, M. Hosseini, J. Alloys Compd. 2016, 695, 2637.
- 28T. Kaewmaneekul, G. Lothongkum, Corros. Sci. 2013, 66, 67.
- 29S. Khireche, D. Boughrara, A. Kadri, L. Hamadou, N. Benbrahim, Corros. Sci. 2014, 87, 504.
- 30Z. Sun, H. Lu, L. Fan, Q. Hong, J. Leng, C. Chen, J. Electrochem. Soc. 2015, 162, A2116.
- 31J. Ma, J. Wen, J. Gao, Q. Li, J. Electrochem. Soc. 2014, 161, A376.
- 32P. Zhang, X. Liu, J. Xue, K. Jiang, J. Power Sources 2020, 451, 227806.
- 33N. Wang, R. Wang, Y. Feng, W. Xiong, J. Zhang, M. Deng, Corros. Sci. 2016, 112, 13.
- 34X. Liu, J. Xue, P. Zhang, Z. Wang, J. Power Sources 2019, 414, 174.
- 35J. Li, B. Zhang, Q. Wei, N. Wang, B. Hou, Electrochim. Acta 2017, 238, 156.
- 36X. Chen, S. Ning, Q. Le, H. Wang, Q. Zou, R. Guo, J. Hou, Y. Jia, A. Atrens, F. Yu, J. Mater. Sci. Technol. 2020, 38, 47.
- 37Y. Lv, M. Liu, Y. Xu, D. Cao, J. Feng, R. Wu, M. Zhang, J. Power Sources 2013, 239, 265.
- 38N. Wang, R. Wang, C. Peng, B. Peng, Y. Feng, C. Hu, Electrochim. Acta 2014, 149, 193.