Mechanical properties, corrosion behavior, and microstructure of Sr modified Al–9.2Mg–0.7Mn alloys
Peng Zhang
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Search for more papers by this authorCorresponding Author
Weijun Xia
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Hunan Provincial Key Laboratory of Spray Deposition Technology & Application, Hunan University, Changsha, People's Republic of China
Correspondence Weijun Xia, School of Materials Science and Engineering, Hunan University, 410082 Changsha, People's Republic of China. Email: [email protected]
Search for more papers by this authorHongge Yan
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Hunan Provincial Key Laboratory of Spray Deposition Technology & Application, Hunan University, Changsha, People's Republic of China
Search for more papers by this authorJihua Chen
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Hunan Provincial Key Laboratory of Spray Deposition Technology & Application, Hunan University, Changsha, People's Republic of China
Search for more papers by this authorBin Su
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Hunan Provincial Key Laboratory of Spray Deposition Technology & Application, Hunan University, Changsha, People's Republic of China
Search for more papers by this authorXinyu Li
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Search for more papers by this authorXinlei Li
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Search for more papers by this authorPeng Zhang
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Search for more papers by this authorCorresponding Author
Weijun Xia
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Hunan Provincial Key Laboratory of Spray Deposition Technology & Application, Hunan University, Changsha, People's Republic of China
Correspondence Weijun Xia, School of Materials Science and Engineering, Hunan University, 410082 Changsha, People's Republic of China. Email: [email protected]
Search for more papers by this authorHongge Yan
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Hunan Provincial Key Laboratory of Spray Deposition Technology & Application, Hunan University, Changsha, People's Republic of China
Search for more papers by this authorJihua Chen
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Hunan Provincial Key Laboratory of Spray Deposition Technology & Application, Hunan University, Changsha, People's Republic of China
Search for more papers by this authorBin Su
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Hunan Provincial Key Laboratory of Spray Deposition Technology & Application, Hunan University, Changsha, People's Republic of China
Search for more papers by this authorXinyu Li
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Search for more papers by this authorXinlei Li
School of Materials Science and Engineering, Hunan University, Changsha, People's Republic of China
Search for more papers by this authorAbstract
The influence of strontium (Sr) additions in the form of Mg–Sr master alloys from 0 to 0.6 wt% on the mechanical properties, corrosive nature, and microstructure of Al–9.2Mg–0.7Mn alloys is investigated. The material is studied in a fully annealed (O-temper) and a sensitizing treatment at 150°C for 7 days. Here we demonstrate that there will be a new phase which might be (Al, Mg)17Sr2 formed in the as-cast microstructure. When the Sr content is 0.2 wt%, under the premise that the mechanical properties of completely annealed alloy change little (relative to the matrix: the ultimate tensile strength increases by 8 MPa and the elongation only decrease by 1.6%), the intergranular corrosion resistance is significantly improved. The specific performance is that the mass loss from intergranular corrosion decreases by more than 53% from the addition of 0.2 wt% Sr after sensitizing.
REFERENCES
- 1W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Mater. Sci. Eng., A. 2000, 280, 37.
- 2I. J. Polmear, Light Alloys: Metallurgy of the Light Metals (Ed: E. Arnold), J. Wiley & Sons, London, 1982.
- 3R. K. Gupta, N. L. Sukiman, M. K. Cavanaugh, B. R. W. Hinton, C. R. Hutchinson, N. Birbilis, Electrochim. Acta. 2012, 66, 245.
- 4R. H. Jones, D. R. Baer, M. J. Danielson, J. S. Vetrano, Metall. Mater. Trans. A. 2001, 32, 1699.
- 5G. M. Scamans, N. J. H. Holroyd, C. D. S. Tuck, Corros. Sci. 1987, 27, 329.
- 6W. Wei, S. González, T. Hashimoto, R. R. Abuaisha, G. E. Thompson, X. Zhou, Mater. Corros. 2015, 67, 378.
- 7A. Alil, M. Popović, J. Bajat, E. Romhanji, Mater. Corros. 2018, 69, 858.
- 8R. Goswami, G. Spanos, P. S. Pao, R. L. Holtz, Metall. Mater. Trans. A. 2011, 42, 348.
- 9A. Halap, T. Radetić, M. Popović, E. Romhanji, Metall. Mater. Trans. A. 2014, 45, 4572.
- 10L. Kramer, M. Phillippi, W. T. Tack, C. Wong, J. Mater. Eng. Perform. 2012, 21, 1025.
- 11J. S. Vetrano, S. M. Bruemmer, L. M. Pawlowski, I. M. Robertson, Mater. Sci. Eng., A. 1997, 238, 101.
- 12C. B. Fuller, A. R. Krause, D. C. Dunand, D. N. Seidman, Mater. Sci. Eng., A. 2002, 338, 8.
- 13C. Meng, D. Zhang, H. Cui, L. Zhuang, J. Zhang, J. Alloys Compd. 2014, 617, 925.
- 14C. Meng, D. Zhang, L. Zhuang, J. Zhang, J Alloys Compd. 2016, 655, 178.
- 15R. K. Gupta, Y. Wang, R. Zhang, N. L. Sukiman, C. H. J. Davies, N. Birbilis, Corrosion 2013, 69, 4.
- 16Y. Wang, R. K. Gupta, N. L. Sukiman, R. Zhang, C. Davies, N. Birbilis, Corros. Sci. 2013, 73, 181.
- 17N. L. Sukiman, R. K. Gupta, R. G. Buchheit, N. Birbilis, Br. Corro. J. 2014, 49, 254.
- 18R. K. Gupta, R. Zhang, C. H. J. Davies, N. Birbilis, Corrosion 2014, 70, 402.
- 19R. Goswami, S. B. Qadri, Mater. Lett. 2017, 200, 21.
- 20B. Closset, H. Dugas, M. Pekguleryuz, J. E. Gruzleski, Metall. Mater. Trans. A. 1986, 17, 1250.
- 21C. B. Alcock, V. P. Itakin, J. Phase Equilib. 1989, 10, 624.
- 22C. Liao, J. Chen, C. Pan, Procedia Eng. 2012, 27, 805.
- 23D. Zhou, J. Liu, S. Xu, P. Peng, Comput. Mater. Sci. 2014, 86, 24.
- 24D. W. Zhou, J. S. Liu, P. Peng, Acta Metall. Sin. Engl. Lett. 2011, 21, 2677.
- 25ASTM International, ASTM G 67–04, Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5xxx Series Aluminum Alloys by Mass Loss After Exposure to Nitric acid (NAMLT Test), ASTM International, West Conshohocken, PA, 2004.
- 26Y. L. Liu, S. B. Kang, Mater. Sci. Techno. 1997, 13, 331.
- 27L. Wu, F. S. Pan, M. B. Yang, R. J. Cheng, J. Mater. Sci. 2013, 48, 5456.
- 28D. X. Liu, Corrosion and Protection of Materials, Northwestern Polytechnical University Press, Xi'an, China 2006.
- 29C. Vargel, Corrosion of Aluminum, Elsevier, Amsterdam, The Netherlands 2004, 61.
- 30R. Goswami, G. Spanos, P. S. Pao, R. L. Holtz, Mater. Sci. Eng., A. 2010, 527, 1089.
- 31L. Tan, T. R. Allen, Corros. Sci. 2010, 52, 548.