A New Strong-Acid Free Route to Produce Xanthan Gum-PANI Composite Scaffold Supporting Bioelectricity
Francesca Pescosolido
Department of Chemical Science and Technologies, University of Rome “Tor Vergata,”, Via Della Ricerca Scientifica, Rome, 00133 Italy
Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome “Tor Vergata,”, Via Montpellier 1, Rome, 00133 Italy
Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata,” Via Montpellier 1, Rome, 00133 Italy
Search for more papers by this authorLuca Montaina
Department of Chemical Science and Technologies, University of Rome “Tor Vergata,”, Via Della Ricerca Scientifica, Rome, 00133 Italy
Search for more papers by this authorRocco Carcione
Department of Chemical Science and Technologies, University of Rome “Tor Vergata,”, Via Della Ricerca Scientifica, Rome, 00133 Italy
Search for more papers by this authorSara Politi
Department of Chemical Science and Technologies, University of Rome “Tor Vergata,”, Via Della Ricerca Scientifica, Rome, 00133 Italy
Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome “Tor Vergata,”, Via Montpellier 1, Rome, 00133 Italy
Search for more papers by this authorRoberto Matassa
Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, Rome, 00161 Italy
Search for more papers by this authorFelicia Carotenuto
Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome “Tor Vergata,”, Via Montpellier 1, Rome, 00133 Italy
Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata,” Via Montpellier 1, Rome, 00133 Italy
Search for more papers by this authorStefania Annarita Nottola
Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, Rome, 00161 Italy
Search for more papers by this authorPaolo Di Nardo
Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome “Tor Vergata,”, Via Montpellier 1, Rome, 00133 Italy
Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata,” Via Montpellier 1, Rome, 00133 Italy
Search for more papers by this authorCorresponding Author
Emanuela Tamburri
Department of Chemical Science and Technologies, University of Rome “Tor Vergata,”, Via Della Ricerca Scientifica, Rome, 00133 Italy
Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome “Tor Vergata,”, Via Montpellier 1, Rome, 00133 Italy
Search for more papers by this authorFrancesca Pescosolido
Department of Chemical Science and Technologies, University of Rome “Tor Vergata,”, Via Della Ricerca Scientifica, Rome, 00133 Italy
Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome “Tor Vergata,”, Via Montpellier 1, Rome, 00133 Italy
Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata,” Via Montpellier 1, Rome, 00133 Italy
Search for more papers by this authorLuca Montaina
Department of Chemical Science and Technologies, University of Rome “Tor Vergata,”, Via Della Ricerca Scientifica, Rome, 00133 Italy
Search for more papers by this authorRocco Carcione
Department of Chemical Science and Technologies, University of Rome “Tor Vergata,”, Via Della Ricerca Scientifica, Rome, 00133 Italy
Search for more papers by this authorSara Politi
Department of Chemical Science and Technologies, University of Rome “Tor Vergata,”, Via Della Ricerca Scientifica, Rome, 00133 Italy
Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome “Tor Vergata,”, Via Montpellier 1, Rome, 00133 Italy
Search for more papers by this authorRoberto Matassa
Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, Rome, 00161 Italy
Search for more papers by this authorFelicia Carotenuto
Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome “Tor Vergata,”, Via Montpellier 1, Rome, 00133 Italy
Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata,” Via Montpellier 1, Rome, 00133 Italy
Search for more papers by this authorStefania Annarita Nottola
Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, Rome, 00161 Italy
Search for more papers by this authorPaolo Di Nardo
Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome “Tor Vergata,”, Via Montpellier 1, Rome, 00133 Italy
Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata,” Via Montpellier 1, Rome, 00133 Italy
Search for more papers by this authorCorresponding Author
Emanuela Tamburri
Department of Chemical Science and Technologies, University of Rome “Tor Vergata,”, Via Della Ricerca Scientifica, Rome, 00133 Italy
Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome “Tor Vergata,”, Via Montpellier 1, Rome, 00133 Italy
Search for more papers by this authorAbstract
Conductive hybrid xanthan gum (XG)–polyaniline (PANI) biocomposites forming 3D structures able to mimic electrical biological functions are synthesized by a strong-acid free medium. In situ aniline oxidative chemical polymerizations are performed in XG water dispersions to produce stable XG–PANI pseudoplastic fluids. XG–PANI composites with 3D architectures are obtained by subsequent freeze-drying processes. The morphological investigation highlights the formation of porous structures; UV–vis and Raman spectroscopy characterizations assess the chemical structure of the produced composites. I–V measurements evidence electrical conductivity of the samples, while electrochemical analyses point out their capability to respond to electric stimuli with electron and ion exchanges in physiological-like environment. Trial tests on prostate cancer cells evaluate biocompatibility of the XG–PANI composite. Obtained results demonstrate that a strong acid-free route produces an electrically conductive and electrochemically active XG–PANI polymer composite. The investigation of charge transport and transfer, as well as of biocompatibility properties of composite materials produced in aqueous environments, brings new perspective for exploitation of such materials in biomedical applications. In particular, the developed strategy can be used to realize biomaterials working as scaffolds that require electrical stimulations for inducing cell growth and communication or for biosignals monitoring and analysis.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1A. Sanchez-Sanchez, I. del Agua, G. G. Malliaras, D. Mecerreyes, in Smart Polymers and Their Applications (Eds: M. R. Aguilar, J. San Roman), Woodhead Publishing in Materials, Elsevier, Amsterdam, the Netherlands 2019, pp. 191–218.
10.1016/B978-0-08-102416-4.00006-5 Google Scholar
- 2I. Del Agua, S. Marina, C. Pitsalidis, D. Mantione, M. Ferro, D. Iandolo, A. Sanchez-Sanchez, G. G. Malliaras, R. M. Owens, D. Mecerreyes, ACS Omega 2018, 3, 7424.
- 3M. A. Bhat, R. A. Rather, A. H. Shalla, Synth. Met. 2021, 273, 116709.
- 4T. F. Otero, J. G. Martinez, J. Mater. Chem. B 2016, 4, 2069.
- 5S. Bhadra, D. Khastgir, N. K. Singha, J. H. Lee, Prog. Polym. Sci. 2009, 34, 783.
- 6B. Guo, P. X. Ma, Biomacromolecules 2018, 19, 1764.
- 7S. Politi, S. Battistoni, R. Carcione, L. Montaina, S. Macis, S. Lupi, E. Tamburri, Adv. Mater. Interfaces 2021, 8, 2101401.
- 8B. Guo, L. Glavas, A.-C. Albertsson, Prog. Polym. Sci. 2013, 38, 1263.
- 9T. F. Otero, Int. J. Smart Nano Mater. 2017, 8, 125.
- 10M. Khan, E. Cantù, S. Tonello, M. Serpelloni, N. Lopomo, E. Sardini, Appl. Sci. 2019, 9, 961.
- 11C. Dhand, M. Das, M. Datta, B. D. Malhotra, Biosens. Bioelectron. 2011, 26, 2811.
- 12D. Passeri, A. Alippi, A. Bettucci, M. Rossi, E. Tamburri, M. L. Terranova, Synth. Met. 2011, 161, 7.
- 13D. Passeri, A. Biagioni, M. Rossi, E. Tamburri, M. L. Terranova, Eur. Polym. J. 2013, 49, 991.
- 14D. Passeri, E. Tamburri, M. L. Terranova, M. Rossi, Nanoscale 2015, 7, 14358.
- 15T.-H. Le, Y. Kim, H. Yoon, Polymers 2017, 9, 150.
- 16J. Stejskal, M. Trchová, P. Bober, P. Humpolíček, V. Kašpárková, I. Sapurina, M. A. Shishov, M. Varga, Encycl. Polym. Sci. Technol. 2015, 1.
- 17A. Ul Haq, L. Montaina, F. Pescosolido, F. Carotenuto, F. Trovalusci, F. De Matteis, E. Tamburri, P. Di Nardo, Sci. Rep. 2023, 13, 2863.
- 18C. Schmidt, T. Rivers, T. Hudson, J. Collier, ACS Symp. Ser. 2002, 832, 154.
10.1021/bk-2003-0832.ch012 Google Scholar
- 19R. Balint, N. J. Cassidy, S. H. Cartmell, Acta Biomater. 2014, 10, 2341.
- 20M. Talikowska, X. Fu, G. Lisak, Biosens. Bioelectron. 2019, 135, 50.
- 21V. Kaspárková, D. Jasenská, Z. Capáková, N. Maráková, J. Stejskal, P. Bober, M. Lehocký, P. Humpolicek, Carbohydr. Polym. 2019, 219, 423.
- 22H. Peng, G. Ma, W. Ying, A. Wang, H. Huang, Z. Lei, J. Power Sources 2012, 211, 40.
- 23M. Lukasiewicz, A. Ptaszek, L. Koziel, B. Achremowicz, M. Grzesik, Polym. Bull. 2007, 58, 281.
- 24B. Weng, X. Liu, R. Shepherd, G. G. Wallace, Synth. Met. 2012, 162, 1375.
- 25E. Tamburri, V. Guglielmotti, S. Orlanducci, M. L. Terranova, D. Sordi, D. Passeri, R. Matassa, M. Rossi, Polymer 2012, 53, 4045.
- 26A. Serafin, M. C. Rubio, M. Carsi, P. Ortiz-Serna, M. J. Sanchis, A. K. Garg, J. M. Oliveira, J. Koffler, M. N. Collins, Biomater. Res. 2022, 26, 63.
- 27S. Wang, C. Sun, S. Guan, W. Li, J. Xu, D. Ge, M. Zhuang, T. Liu, X. Ma, J. Mater. Chem. B 2017, 5, 4774.
- 28K. M. Sajesh, R. Jayakumar, S. V. Nair, K. P. Chennazhi, Int. J. Biol. Macromol. 2013, 62, 465.
- 29A. Kumar, K. M. Rao, S. S. Han, Carbohydr. Polym. 2018, 180, 128.
- 30G. Sworn, in Handbook of Hydrocolloids (Eds: G. O. Phillips, P.A. Williams), 3rd ed., Woodhead Publishing Series in Food Science, Technology and Nutrition, Elsevier, Amsterdam, the Netherlands 2021, pp. 833853.
- 31D. F. S. Petri, J. Appl. Polym. Sci. 2015, 132, 42035.
- 32M. H. Abu Elella, E. S. Goda, M. A. Gab-Allah, S. E. Hong, B. Pandit, S. Lee, H. Gamal, A. U. Rehman, K. R. Yoon, J. Environ. Chem. Eng. 2021, 9, 104702.
- 33S. Ahmad, M. Ahmad, K. Manzoor, R. Purwar, S. Ikram, Int. J. Biol. Macromol. 2019, 136, 870.
- 34S. Jadoun, U. Riaz, V. Budhiraja, Med. Devices Sens. 2021, 4, e10141.
- 35D. S. Bolshin, P. K. Kashkarov, Nanobiotechnol. Rep. 2022, 17, 380.
- 36V. B. Bueno, S. H. Takahashi, L. H. Catalani, S. I. C. De Torresi, D. F. S. Petri, Mater. Sci. Eng., C 2015, 52, 121.
- 37S. G. Larimi, H. H. Darzi, G. N. Darzi, Synth. Met. 2012, 162, 171.
- 38S. Pandey, J. Ramontja, Int. J. Biol. Macromol. 2016, 89, 89.
- 39G. Babaladimath, S. Chapi, J. Mater. Sci. 2018, 29, 11159.
- 40J. Stejskal, I. Sapurina, M. Trchová, Prog. Polym. Sci. 2010, 35, 1420.
- 41I. Sapurina, J. Stejskal, Polym. Int. 2008, 57, 1295.
- 42N. Zoratto, R. Matassa, E. Montanari, G. Familiari, S. Petralito, T. Coviello, C. Di Meo, P. Matricardi, J. Mater. Sci. 2020, 55, 9562.
- 43M. Bossù, R. Matassa, M. Relucenti, F. Iaculli, A. Salucci, G. Di Giorgio, G. Familiari, A. Polimeni, S. Di Carlo, Materials 2020, 13, 1803.
- 44N. Zoratto, L. Forcina, R. Matassa, L. Mosca, G. Familiari, A. Musarò, M. Mattei, T. Coviello, C. Di Meo, P. Matricardi, Pharmaceutics 2021, 13, 1781.
- 45K.-W. Song, Y.-S. Kim, G.-S. Chang, Fibers Polym. 2006, 7, 129.
- 46S. E. Lastra Ripoll, S. E. Quintana Martínez, L. A. García Zapateiro, ACS Omega 2021, 6, 16119.
- 47Y. Wang, A. Liu, T. Li, Y. Han, Y. Ma, Q. Zhang, J. Zhang, J. Electron. Mater. 2020, 49, 3751.
- 48S. Ray, S. Banerjee, S. Maiti, B. Laha, S. Barik, B. Sa, U. K. Bhattacharyya, Drug Delivery 2010, 17, 508.
- 49B. C. Roy, M. D. Gupta, L. Bhowmik, J. K. Ray, Synth. Met. 1999, 100, 233.
- 50G. Scordo, V. Bertana, A. Ballesio, R. Carcione, S. L. Marasso, M. Cocuzza, C. F. Pirri, M. Manachino, M. Gomez Gomez, A. Vitale, A. Chiodoni, E. Tamburri, L. Scaltrito, Nanomaterials 2021, 11, 94.
- 51Y. Cao, A. Andreatta, A. J. Heeger, P. Smith, Polymer 1989, 30, 2305.
- 52M. T. Cortés, E. V. Sierra, Polym. Bull. 2006, 56, 37.
- 53X. Du, Y., Xu, L. Xiong, Y. Bai, J. Zhu, S. Mao, J. Appl. Polym. Sci. 2014, 131, 40827.
- 54T. H. Qazi, R. Rai, D. Dippold, J. E. Roether, D. W. Schubert, E. Rosellini, N. Barbani, A. R. Boccaccini, Acta Biomater. 2014, 10, 2434.
- 55T. H. Qazi, R. Rai, A. R. Boccaccini, Biomaterials 2014, 35, 9068.
- 56T. Alves, J. Souza, V. Amaral, D. Almeida, D. Grotto, R. Lima, N. Aranha, L. Silveira Filho, J. Oliveira Junior, C. Barros, P. Severino, A. Souza, M. Chaud, Colloids Surf., A 2019, 579, 123650.
- 57R. Rai, J. A. Roether, A. R. Boccaccini, Prog. Biomed. Eng. 2022, 4, 042004.
10.1088/2516-1091/ac93d3 Google Scholar
- 58N. Baheiraei, H. Yeganeh, J. Ai, R. Gharibi, S. Ebrahimi-Barough, M. Azami, S. Vahdat, H. Baharvand, J. Biomed. Mater. Res., Part A 2015, 103, 3179.