The Effect of the Hydrophilic/Hydrophobic Ratio of Polymeric Micelles on their Endocytosis Pathways into Cells
Zhao Zhang
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
Search for more papers by this authorQianqian Qu
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
Search for more papers by this authorJinrong Li
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
Search for more papers by this authorCorresponding Author
Shaobing Zhou
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. ChinaSearch for more papers by this authorZhao Zhang
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
Search for more papers by this authorQianqian Qu
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
Search for more papers by this authorJinrong Li
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
Search for more papers by this authorCorresponding Author
Shaobing Zhou
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. ChinaSearch for more papers by this authorAbstract
Fluorescein isothiocyanate (FITC), a fluorescent probe, is coupled to amphiphilic monomethoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) copolymers. FITC-labeled mPEG-PCL copolymers self-assemble into micelles through the solvent evaporation method. The cellular internalization is examined using fluorescence microscopy on incubation of NIH-3T3 fibroblasts with micelles or free FITC solution. The effect of the hydrophilic/hydrophobic ratio on the endocytosis mechanisms is evaluated by fluorescence microscopy on culturing of human hepatoblastoma cells and human umbilical vein endothelial cells, individually, mixed with the micelles holding the same parameters including micelle size, shape, and surface charges.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
mabi_201300037_sm_suppdata.pdf197.2 KB | suppdata |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nat. Nanotechnol. 2007, 2, 751.
- 2 J. H. Parka, G. V. Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, M. J. Sailor, Proc. Natl. Acad. Sci. USA 2010, 107, 981.
- 3 T. Lammers, S. Aime, W. E. Hennink, G. Storm, F. Kiessling, Acc. Chem. Res. 2011, 44, 1029.
- 4 J. A. Barreto, W. O'Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, Adv. Mater. 2011, 23, H18.
- 5 A. Kumari, S. K. Yadav, S. C. Yadav, Colloids Surf. B 2010, 75, 1.
- 6 V. Sokolova, M. Epple, Angew. Chem. Int. Ed. 2008, 47, 1382.
- 7 Y. Mi, X. L. Liu, J. Zhao, J. Ding, S. S. Feng, Biomaterials 2012, 33, 7519.
- 8 F. Y. Huang, W. L. Mei, Y. N. Li, G. H. Tan, H. F. Dai, J. L. Guo, H. Wang, Y. H. Huang, H. G. Zhao, S. L. Zhou, L. Li, Y. Y. Lin, Eur. J. Cancer 2012, 48, 2260.
- 9 K. Takara, H. Hatakeyama, G. Kibria, N. Ohga, K. Hida, H. Harashima, J. Controlled Release 2012, 162, 225.
- 10 X. X. Zhang, S. Y. Guo, R. Fan, M. R. Yu, F. F. Li, C. L. Zhu, Y. Gan, Biomaterials 2012, 33, 7103.
- 11 X. H. Xu, H. Yuan, J. Chang, B. He, Z. W. Gu, Angew. Chem. Int. Ed. 2012, 51, 3130.
- 12 J. D. Lim, E. E. Simanek, Adv. Drug Delivery Rev. 2012, 64, 826.
- 13 C. Wang, Z. Wang, X. Zhang, Acc. Chem. Res. 2012, 45, 608.
- 14 Y. Wang, H. Xu, X. Zhang, Adv. Mater. 2009, 21, 2849.
- 15 O. C. Farokhzad, R. Langer, ACS Nano 2009, 3, 16.
- 16 A. P. Kumar, D. Depan, N. S. Tomer, R. P. Singh, Prog. Polym. Sci. 2009, 34, 479.
- 17 G. Sahay, D. Y. Alakhova, A. V. Kabanov, J. Controlled Release 2010, 145, 182.
- 18 H. Hillaireau, P. Couvreur, Cell. Mol. Life Sci. 2009, 66, 2873.
- 19 R. G. Parton, K. Simons, Nat. Rev. Mol. Cell. Bio. 2007, 8, 185.
- 20 J. Mercer, A. Helenius, Nat. Cell. Biol. 2009, 11, 510.
- 21 H. Yue, W. Wei, Z. G. Yue, P. P. Lv, L. Y. Wang, G. H. Ma, Z. G. Su, Eur. J. Pharm. Sci. 2010, 41, 650.
- 22 S. E. A. Gratton, P. A. Ropp, P. D. Pohlhaus, J. C. Luft, V. J. Madden, M. E. Napier, J. M. DeSimone, Proc. Natl. Acad. Sci. USA 2008, 105, 11613.
- 23 J. A. Champion, Y. K. Katare, S. Mitragotri, J. Controlled Release 2007, 121, 3.
- 24 T. Chen, X. Guo, X. Liu, S. Shi, J. Wang, C. L. Shi, Z. Y. Qian, S. B. Zhou, Adv. Healthcare Mater. 2012, 1, 214.
- 25 Y. Geng, P. Dalhaimer, S. S. Cai, R. Tsai, M. Tewari, T. Minko, D. E. Discher, Nat. Nanotechnol. 2007, 2, 249.
- 26 A. Verma, F. Stellacci, Small 2010, 6, 12.
- 27 M. A. Woodruff, D. W. Hutmacher, Prog. Polym. Sci. 2010, 35, 1217.
- 28 L. S. Nair, C. T. Laurencin, Prog. Polym. Sci. 2007, 32, 762.
- 29 S. B. Zhou, X. M. Deng, H. Yang, Biomaterials 2003, 24, 3563.
- 30 A. S. Mikhail, C. Allen, Biomacromolecules 2011, 11, 1273.
- 31 S. S. Cai, K. Vijayan, D. Cheng, E. M. Lima, D. E. Discher, Pharm. Res. 2007, 24, 2099.
- 32 M. Shahin, S. Ahmed, K. Kaur, A. Lavasanifar, Biomaterials 2011, 32, 5123.
- 33 M. L. Gou, X. L. Zheng, K. Men, J. Zhang, L. Zheng, X. H. Wang, F. Luo, Y. L. Zhao, X. Zhao, Y. Q. Wei, Z. Y. Qian, J. Phys. Chem. B 2009, 113, 12928.
- 34 Y. Geng, D. E. Discher, J. Am. Chem. Soc. 2005, 127, 12780.
- 35 X. B. Xiong, A. Mahmud, H. Uludag, A. Lavasanifar, Biomacromolecules 2007, 8, 874.
- 36 J. L. Yan, Z. Y. Ye, H. Y. Luo, M. Chen, Y. Zhou, W. S. Tan, Y. Xiao, Y. Zhang, M. D. Lang, Polym. Chem. 2011, 2, 1331.
- 37 Z. X. Du, J. T. Xu, Z. Q. Fan, Macromolecules 2007, 40, 7633.
- 38 Q. Zhou, X. Guo, T. Chen, Z. Zhang, S. J. Shao, C. Luo, J. R. Li, S. B. Zhou, J. Phys. Chem. B 2011, 115, 12662.
- 39 R. S. Zhang, A. Bowyer, R. Eisenthal, J. Hubble, Biotechnol. Bioeng. 2007, 97, 976.
- 40 D. Q. Wu, B. Lu, C. Chang, C. S. Chen, T. Wang, Y. Y. Zhang, S. X. Cheng, X. J. Jiang, X. Z. Zhang, R. X. Zhuo, Biomaterials 2009, 30, 1363.
- 41 Q. Zhou, Z. Zhang, T. Chen, X. Guo, S. B. Zhou, Colloids Surf. B 2011, 86, 45.
- 42 Q. Tian, X. H. Wang, W. Wang, C. N. Zhang, P. Wang, Z. Yuan, Nanomed. Nanotechnol. 2012, 8, 870.
- 43 Z. Zhang, X. Q. Xiong, J. L. Wan, L. Xiao, L. Gan, Y. M. Feng, H. B. Xu, X. L. Yang, Biomaterials 2012, 33, 7233.
- 44 J. A. Kim, C. Åberg, A. Salvati, K. A. Dawson, Nat. Nanotechnol. 2012, 7, 62.
- 45 A. Lesniak, A. Campbell, M. P. Monopoli, I. Lynch, A. Salvati, K. A. Dawson, Biomaterials 2010, 31, 9511.
- 46 D. Walczyk, F. B. Bombelli, M. P. Monopoli, I. Lynch, K. A. Dawson, J. Am. Chem. Soc. 2010, 132, 5761.