Volume 99, Issue 7 pp. 3100-3121

Internalization and intracellular trafficking of a PTD-conjugated anti-fibrotic peptide, AZX100, in human dermal keloid fibroblasts

Charles R. Flynn

Corresponding Author

Charles R. Flynn

Center for Metabolic Biology, Arizona State University, Tempe, Arizona 85287-3704

Department of Surgery, Vanderbilt University Medical School, MRB IV Langford Hall 8465A, Nashville, TN 37232. Telephone: 011-615-343-8329; Fax: 011-615-343-8329Search for more papers by this author
Joyce Cheung-Flynn

Joyce Cheung-Flynn

Capstone Therapeutics, Tempe, Arizona 85281

Search for more papers by this author
Christopher C. Smoke

Christopher C. Smoke

Center for Metabolic Biology, Arizona State University, Tempe, Arizona 85287-3704

Search for more papers by this author
David Lowry

David Lowry

School of Life Sciences, Arizona State University, Tempe, Arizona 85287-6505

Search for more papers by this author
Robert Roberson

Robert Roberson

School of Life Sciences, Arizona State University, Tempe, Arizona 85287-6505

Search for more papers by this author
Michael R. Sheller

Michael R. Sheller

Capstone Therapeutics, Tempe, Arizona 85281

Search for more papers by this author
Colleen M. Brophy

Colleen M. Brophy

Center for Metabolic Biology, Arizona State University, Tempe, Arizona 85287-3704

Search for more papers by this author
First published: 05 February 2010
Citations: 2

Abstract

A challenge in advanced drug delivery is selectively traversing the plasma membrane, a barrier that prohibits the intracellular delivery of most peptide and nucleic acid-based therapeutics. A variety of short amino acid sequences termed protein transduction domains (PTDs) first identified in viral proteins have been utilized for over 20 years to deliver proteins nondestructively into cells, however, the mechanisms by which this occurs are varied and cell-specific. Here we describe the results of live cell imaging experiments with AZX100, a cell-permeable anti-fibrotic peptide bearing an “enhanced” PTD (PTD4). We monitored fluorescently labeled AZX100 upon cell surface binding and subsequent intracellular trafficking in the presence of cellular process inhibitors and various well-defined fluorescently labeled cargos. We conclude that AZX100 enters cells via caveolae rapidly, in a manner that is independent of glycoconjugates, actin/microtubule polymerization, dynamins, multiple GTPases, and clathrin, but is associated with lipid rafts as revealed by methyl-β-cylodextrin. AZX100 treatment increases the expression of phospho-caveolin (Y14), a critical effector of focal adhesion dynamics, suggesting a mechanistic link between caveolin-1 phosphorylation and actin cytoskeleton dynamics. Our results reveal novel and interesting properties of PTD4 and offer new insight into the cellular mechanisms facilitating an advanced drug delivery tool. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3100–3121, 2010

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.