Reactions of N-alkenyl Thioureas with p-alkoxyphenyltellurium Trichlorides
Mykola Kut
Organic Synthesis Laboratory, Uzhhorod National University, Uzhhorod, 88000 Ukraine
Search for more papers by this authorMaksym Fizer
Organic Synthesis Laboratory, Uzhhorod National University, Uzhhorod, 88000 Ukraine
Search for more papers by this authorCorresponding Author
Mikhajlo Onysko
Organic Synthesis Laboratory, Uzhhorod National University, Uzhhorod, 88000 Ukraine
E-mail: [email protected]Search for more papers by this authorVasil Lendel
Organic Synthesis Laboratory, Uzhhorod National University, Uzhhorod, 88000 Ukraine
Search for more papers by this authorMykola Kut
Organic Synthesis Laboratory, Uzhhorod National University, Uzhhorod, 88000 Ukraine
Search for more papers by this authorMaksym Fizer
Organic Synthesis Laboratory, Uzhhorod National University, Uzhhorod, 88000 Ukraine
Search for more papers by this authorCorresponding Author
Mikhajlo Onysko
Organic Synthesis Laboratory, Uzhhorod National University, Uzhhorod, 88000 Ukraine
E-mail: [email protected]Search for more papers by this authorVasil Lendel
Organic Synthesis Laboratory, Uzhhorod National University, Uzhhorod, 88000 Ukraine
Search for more papers by this authorAbstract
N-Аlkenyl thioureas, under the action of aryltellurium trichlorides, form the addition products N-{2-chloro-3-[dichloro(4-alkoxyphenyl)-tellanyl]propyl} thioureas or the intramolecular cyclization products 5-{dichloro(4-alkoxyphenyl)-telluromethyl}-2-phenylamino-4,5-dihydro-1,3-thiazole hydrochlorides. The reaction route depends on the nature of the substituent in the thiourea. The Fukui function reactivity indexes identify the electrophilic/nucleophilic centers and explain the possible cyclization reaction in the case of phenyl substituted thioureas. In the case of other substituents, the calculated values of partial atomic charges clearly predict that the addition reaction is more possible.
References and Notes
- 1Comasseto, J. V.; Grazini, M. V. A. Synth Commun 1992, 22, 949.
- 2Borecka, B.; Cameron, T. S.; Malik, M. A.; Smith, B. C. Can J Chem 1995, 73, 255.
- 3Kut, M.; Onysko, M.; Lendel, V. J Heterocyclic Chem 2018, 55, 888.
- 4Princival, C.; Dos Santos, A. A.; Comasseto, J. V. J Braz Chem Soc 2015, 26, 832.
- 5Kut, M.; Onysko, M.; Lendel, V. Heterocycl Commun 2016, 22, 347.
- 6Creeke, P. I.; Mellor, J. M. Tetrahedron Lett 1989, 30, 4435.
- 7Mellor, J. M.; Mohammed, S. Tetrahedron Lett 1991, 32, 7111.
- 8Dzurilla, M.; Kutschy, P.; Imrich, J.; Kocsik, D.; Kraus, R. Collect Czech Chem Commun 1991, 56, 1287.
- 9Abd El-Samii, Z. K. Monatsh Chem 1995, 126, 609.
10.1007/BF00807436 Google Scholar
- 10Zborovskii, Y. L.; Orysyk, V. V.; Staninets, V. I.; Rusanov, E. B.; Chernega, A. N. Russ J Org Chem 2007, 43, 1030.
- 11Shen, S.-S.; Lei, M.-Y.; Wong, Y.-X.; Tong, M.-L.; Priscilla, L.-Y. T.; Chiba, S.; Narasaka, K. Tetrahedron Lett 2009, 50, 3161.
- 12Rani, R. B.; Rahman, M. F.; Bhalerao, L. T. Tetrahedron 1992, 48, 1953.
- 13Richter, C.; Klatt, K.; Feuerer, A.; Schulze, K. J Pract Chem 1992, 334, 60.
- 14Ayers, P. W.; Parr, R. G. J Am Chem Soc 2000, 122, 2010.
- 15Dragonette, K. S.; Karle, I. L. Acta Crystallogr 1965, 19, 978.
- 16Filinchuk, Y. E.; Oliinik, V. V.; Schollmeyer, D. Koord Khim 1999, 25, 226.
- 17Bevziuk, K.; Chebotarev, A.; Snigur, D.; Bazel, Y.; Fizer, M.; Sidey, V. J Mol Struct 2017, 1144, 216.
- 18Borecka, B.; Cameron, T. S.; Malik, M. A.; Smith, B. C. Can J Chem 1994, 72, 1844.
- 19Esperås, S.; George, J. W.; Husebye, S.; Mikalsen, Ø. Acta Chem Scand 1975, A29, 141.
- 20O'Quinn, G. K.; Rudd, M. D.; Kautz, J. A. Phosphorus, Sulfur Silicon Relat Elem 2002, 177, 853.
- 21Huang, X.; Wang, Y.-P. Tetrahedron Lett 1996, 37, 7417.
- 22Castellano, E. E.; Zukerman-Schpector, J.; Tercio, J.; Ferreira, B.; Comassetto, J. V. Acta Crystallogr C 1986, 42, 44.
10.1107/S0108270186097378 Google Scholar
- 23Fizer, M.; Sukharev, S.; Slivka, M.; Mariychuk, R.; Lendel, V. J Organomet Chem 2016, 804, 6.
- 24Fizer, M.; Sidey, V.; Tupys, A.; Ostapiuk, Y.; Tymoshuk, O.; Bazel, Y. J Mol Struct 2017, 1149, 669.
- 25Reichel, L.; Kirschbaum, E. Ann Chem 1936, 523, 211.
- 26Fizer, M. Synlett 2013, 24, 2019.
- 27Olken, N. M.; Marletta, M. A. J Med Chem 1992, 35, 1137.
- 28Bruson, H. A.; Eastes, J. W. J Am Chem Soc 1937, 59, 2011.
- 29McManus, S. P.; Carroll, J. T. J Org Chem 1970, 35, 3768.
- 30Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A. III; Skiff, W. M. J Am Chem Soc 1992, 114, 10024.
- 31Head-Gordon, M.; Pople, J. A.; Frisch, M. J Chem Phys Lett 1988, 153, 503.
- 32Kovaćs, A.; Csonka, G. I.; Keserü, G. M. J Comput Chem 1998, 19, 308.
- 33McAllister, L. J.; Bruce, D. W.; Karadakov, P. B. Phys Chem Chem Phys 2014, 16, 2576.
- 34Weigend, F.; Ahlrichs, R. Phys Chem Chem Phys 2005, 7, 3297.
- 35Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J Chem Phys 2003, 119, 11113.
- 36Becke, A. D. J Chem Phys 1993, 98, 1372.
- 37Reiher, M. Theor Chem Acc 2006, 116, 241.
- 38Cao, J.; Ren, Q.; Chen, F.; Lu, T. Sci China Chem 2015, 58, 1845.
- 39Hirshfeld, F. L. Theor Chim Acta 1977, 44, 129.
- 40Barone, V.; Cossi, M. J Phys Chem A 1998, 102, 1995.
- 41Neese, F. J Comput Chem 2003, 24, 1740.
- 42Izsak, R.; Neese, F. J Chem Phys 2011, 135, 144105(1).
- 43Weigend, F. Phys Chem Chem Phys 2006, 8, 1057.
- 44Hellweg, A.; Hattig, C.; Hofener, S.; Klopper, W. Theor Chem Acc 2007, 117, 587.
- 45Pantazis, D. A.; Neese, F. Theor Chem Acc 2012, 131, 1292.
- 46Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. J Chem 2012, 4, 1.
- 47Neese, F. WIREs Comput Mol Sci 2012, 2, 73.
- 48Allouche, A. R. J Comput Chem 2011, 32, 174.
- 49 Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.