Fragment and torsion biasing algorithms for construction of small organic molecules in proteins using DOCK
John D. Bickel
Department of Chemistry, Stony Brook University, New York, USA
Search for more papers by this authorBrock T. Boysan
Department of Chemistry, Stony Brook University, New York, USA
Search for more papers by this authorCorresponding Author
Robert C. Rizzo
Department of Applied Mathematics & Statistics, Stony Brook University, New York, USA
Institute of Chemical Biology & Drug Discovery, Stony Brook University, New York, USA
Laufer Center for Physical & Quantitative Biology, Stony Brook University, New York, USA
Correspondence
Robert C. Rizzo, Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York 11794, USA.
Email: [email protected]
Search for more papers by this authorJohn D. Bickel
Department of Chemistry, Stony Brook University, New York, USA
Search for more papers by this authorBrock T. Boysan
Department of Chemistry, Stony Brook University, New York, USA
Search for more papers by this authorCorresponding Author
Robert C. Rizzo
Department of Applied Mathematics & Statistics, Stony Brook University, New York, USA
Institute of Chemical Biology & Drug Discovery, Stony Brook University, New York, USA
Laufer Center for Physical & Quantitative Biology, Stony Brook University, New York, USA
Correspondence
Robert C. Rizzo, Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York 11794, USA.
Email: [email protected]
Search for more papers by this authorAbstract
The computational construction of small organic molecules (de novo design), directly in a protein binding site, is an effective means for generating novel ligands tailored to fit the pocket environment. In this work, we present two new methods, which aim to improve de novo design outcomes using (1) biasing algorithms to prioritize selection and/or acceptance of fragments and torsions during growth, and (2) parallel-based clustering and pruning algorithms to remove duplicate molecules as candidate fragment are added. Large-scale testing encompassing thousands of simulations were employed to interrogate the methods in terms of multiple metrics which include numbers of duplicate molecules generated, pairwise-similarity, focused library reconstruction rates, fragment and torsion frequencies, fragment and torsion rank scores, interaction energy and drug-likeness scores, and 3D pose comparisons. The biasing algorithms, particularly those that include fragment and torsion components simultaneously, led to molecules that more closely mimicked the distributions of fragments and torsions found in drug-like libraries. The new parallel-based clustering and pruning algorithms, compared with the existing serial approach, also led to larger ensembles comprised of topologically unique molecules with much greater efficiency by removing redundant growth paths.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
jcc27508-sup-0001-Supinfo.pdfPDF document, 2.3 MB | Figure S1. 2D depictions and DOCK6 codes for 382 fragments (sidechains, linkers, scaffolds) derived from the deconstruction of ~13 million drug-like molecules (see main text for details). Fragments rank ordered by observed frequencies. Attachment points (APs) are denoted by squiggly lines along with corresponding bond orders. Images were generated with RDKit. Table S1. Molecular fragments (sidechain = 1 AP, linker = 2 APs, scaffold = 3+ APs) and their corresponding raw and relative frequencies for the 382 fragments depicted in Figure S1. Fragments rankordered by raw frequency. Relative frequencies = raw fragment frequency/sum of all frequencies. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1I. D. Kuntz, Science 1992, 257, 1078.
- 2B. K. Shoichet, Nature 2004, 432, 862.
- 3W. L. Jorgensen, Science 2004, 303, 1813.
- 4W. J. Allen, T. E. Balius, S. Mukherjee, S. R. Brozell, D. T. Moustakas, P. T. Lang, D. A. Case, I. D. Kuntz, R. C. Rizzo, J. Comput. Chem. 2015, 36, 1132.
- 5H.-J. Böhm, J. Comput. Aided Mol. Des. 1992, 6, 61.
- 6S. H. Rotstein, M. A. Murcko, J. Comput. Aided Mol. Des. 1993, 7, 23.
- 7S. H. Rotstein, M. A. Murcko, J. Med. Chem. 1993, 36, 1700.
- 8B. Waszkowycz, D. E. Clark, D. Frenkel, J. Li, C. W. Murray, B. Robson, D. R. Westhead, J. Med. Chem. 1994, 37, 3994.
- 9V. J. Gillet, G. Myatt, Z. Zsoldos, A. P. Johnson, Perspect. Drug Discovery Des. 1995, 3, 34.
- 10D. A. Pearlman, M. A. Murcko, J. Med. Chem. 1996, 39, 1651.
- 11R. S. DeWitte, A. V. Ishchenko, E. I. Shakhnovich, J. Am. Chem. Soc. 1997, 119, 4608.
- 12N. P. Todorov, P. M. Dean, J. Comput.-Aided Mol. Des. 1997, 11, 175.
- 13R. Bohacek, C. McMartin, P. Glunz, D. H. Rich, in Rational Drug Design (Eds: D. G. Truhlar, W. J. Howe, A. J. Hopfinger, J. Blaney, R. A. Dammkoehler), Springer New York, New York, NY 1999, p. 103.
10.1007/978-1-4612-1480-9_9 Google Scholar
- 14G. Schneider, M.-L. Lee, M. Stahl, P. Schneider, J. Comput. Aided Mol. Des. 2000, 14, 487.
- 15N. Brown, B. McKay, J. Gasteiger, J. Comput. Aided Mol. Des. 2004, 18, 761.
- 16U. Fechner, G. Schneider, J. Chem. Inf. Model. 2006, 46, 699.
- 17F. Dey, A. Caflisch, J. Chem. Inf. Model. 2008, 48, 679.
- 18P. S. Kutchukian, D. Lou, E. I. Shakhnovich, J. Chem. Inf. Model. 2009, 49, 1630.
- 19Y. Yuan, J. Pei, L. Lai, J. Chem. Inf. Model. 2011, 51, 1083.
- 20K. Kawai, N. Nagata, Y. Takahashi, J. Chem. Inf. Model. 2014, 54, 49.
- 21W. J. Allen, B. C. Fochtman, T. E. Balius, R. C. Rizzo, J. Comput. Chem. 2017, 38, 2641.
- 22T. Blaschke, J. Arus-Pous, H. Chen, C. Margreitter, C. Tyrchan, O. Engkvist, K. Papadopoulos, A. Patronov, J. Chem. Inf. Model. 2020, 60, 5918.
- 23J. O. Spiegel, J. D. Durrant, Aust. J. Chem. 2020, 12, 25.
- 24F. Grisoni, B. J. H. Huisman, A. L. Button, M. Moret, K. Atz, D. Merk, G. Schneider, Sci. Adv. 2021, 7, 7.
- 25G. D. R. Matos, S. Pak, R. C. Rizzo, J. Chem. Inf. Model. 2023, 63, 5803.
- 26S. H. Pegg, J. Haresco, I. Kuntz, J. Comput.-Aided Mol. Des. 2001, 15, 911.
- 27U. Fechner, G. Schneider, J. Chem. Inf. Model. 2007, 47, 656.
- 28L. E. Prentis, C. D. Singleton, J. D. Bickel, W. J. Allen, R. C. Rizzo, J. Comput. Chem. 2022, 43, 1942.
- 29M. Hartenfeller, G. Schneider, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 742.
- 30W. Gao, C. W. Coley, J. Chem. Inf. Model. 2020, 60, 5714.
- 31B. I. Tingle, K. G. Tang, M. Castanon, J. J. Gutierrez, M. Khurelbaatar, C. Dandarchuluun, Y. S. Moroz, J. J. Irwin, J. Chem. Inf. Model. 2023, 63, 1166.
- 32C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Adv. Drug Delivery Rev. 2001, 46, 3.
- 33G. Maggiora, M. Vogt, D. Stumpfe, J. Bajorath, J. Med. Chem. 2014, 57, 3186.
- 34A. Schuffenhauer, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 842.
- 35H. Sun, G. Tawa, A. Wallqvist, Drug Discovery Today 2012, 17, 310.
- 36T. E. Balius, S. Mukherjee, R. C. Rizzo, J. Comput. Chem. 2011, 32, 2273.
- 37T. E. Balius, W. J. Allen, S. Mukherjee, R. C. Rizzo, J. Comput. Chem. 2013, 34, 1226.
- 38L. Jiang, R. C. Rizzo, J. Phys. Chem. B 2015, 119, 1083.
- 39W. J. Allen, R. C. Rizzo, J. Chem. Inf. Model. 2014, 54, 518.
- 40A. Lipowski, D. Lipowska, Physica A: Stat. Mech. Appl. 2012, 391, 2193.
- 41A. Bender, H. Y. Mussa, R. C. Glen, S. Reiling, J. Chem. Inf. Comput. Sci. 2004, 44, 1708.
- 42A. Bender, H. Y. Mussa, R. C. Glen, S. Reiling, J. Chem. Inf. Comput. Sci. 2004, 44, 170.
- 43S. Mukherjee, T. E. Balius, R. C. Rizzo, J. Chem. Inf. Model. 2010, 50, 1986.
- 44H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 2000, 28, 235.
- 45D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz Jr., A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, J. Comput. Chem. 2005, 26, 1668.
- 46 Molecular Operating Environment (MOE), Chemical Computing Group Inc., Montreal, QC, Canada 2016.
- 47E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 2004, 25, 1605.
- 48J. Wang, W. Wang, P. A. Kollman, D. A. Case, J. Mol. Graphics Modell. 2006, 25, 247.
- 49A. Jakalian, B. L. Bush, D. B. Jack, C. I. Bayly, J. Comput. Chem. 2000, 21, 132.
- 50A. Jakalian, D. B. Jack, C. I. Bayly, J. Comput. Chem. 2002, 23, 1623.
- 51J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, C. Simmerling, J. Chem. Theory Comput. 2015, 11, 3696.
- 52J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157.
- 53P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, C. SciPy, Nat. Methods 2020, 17, 261.