Photophysical properties of donor (D)–acceptor (A)–donor (D) diketopyrrolopyrrole (A) systems as donors for applications to organic electronic devices
Nathália M. P. Rosa
Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, Brazil
Search for more papers by this authorCorresponding Author
Itamar Borges Jr
Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, Brazil
Correspondence
Itamar Borges Jr, Departamento de Química, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, 22290-270 Rio de Janeiro, Brazil.
Email: [email protected]
Search for more papers by this authorNathália M. P. Rosa
Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, Brazil
Search for more papers by this authorCorresponding Author
Itamar Borges Jr
Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, Brazil
Correspondence
Itamar Borges Jr, Departamento de Química, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, 22290-270 Rio de Janeiro, Brazil.
Email: [email protected]
Search for more papers by this authorAbstract
Fourteen substituted diketopyrrolopyrrole (DPP) molecules in a donor (D)–acceptor (DPP)–donor (D) arrangement were designed. We employed density functional theory, time-dependent DFT, DFT-MRCI and the ab initio wave function second-order algebraic diagrammatic construction (ADC(2)) methods to investigate theoretically these systems. The examined aromatic substituents have one, two, or three hetero- and non-hetero rings. We comprehensively investigated their optical, electronic, and charge transport properties to evaluate potential applications in organic electronic devices. We found that the donor substituents based on one, two, or three aromatic rings bonded to the DPP core can improve the efficiency of an organic solar cell by fine-tuning the highest occupied molecular orbital/lowest unoccupied molecular orbital levels to match acceptors in typical bulk heterojunctions acceptors. Several properties of interest for organic photovoltaic devices were computed. We show that the investigated molecules are promising for applications as donor materials when combined with typical acceptors in bulk heterojunctions because they have appreciable energy conversion efficiencies resulting from their low ionization potentials and high electron affinities. This scenario allows a more effective charge separation and reduces the recombination rates. A comprehensive charge transfer analysis shows that D–A (DDP)–D systems have significant intramolecular charge transfer, further confirming their promise as candidates for donor materials in solar cells. The significant photophysical properties of DPP derivatives, including the high fluorescence emission, also allow these materials to be used in organic light-emitting diodes.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the supplementary material of this article. Additional data are available in GitHub and Zenodo114 and can be accessed via https://doi.org/10.5281/zenodo.10722176.
Supporting Information
Filename | Description |
---|---|
jcc27492-sup-0001-supinfo.docxWord 2007 document , 6.9 MB | Appendix S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 1954, 25, 676.
- 2I. Borges, A. J. A. Aquino, A. Köhn, R. Nieman, W. L. Hase, L. X. Chen, H. Lischka, J. Am. Chem. Soc. 2013, 135, 18252.
- 3L. Modesto-Costa, I. Borges, A. J. A. Aquino, H. Lischka, J. Chem. Phys. 2018, 149, 1.
10.1063/1.5054919 Google Scholar
- 4I. Borges, E. Uhl, L. Modesto-Costa, A. J. A. Aquino, H. Lischka, J. Phys. Chem. C 2016, 120, 21818.
- 5Y. Li, W. Huang, D. Zhao, L. Wang, Z. Jiao, Q. Huang, P. Wang, M. Sun, G. Yuan, Molecules 2022, 27, 1.
- 6H. Roohi, N. Mohtamadifar, RSC Adv. 2022, 12, 11557.
- 7Y. Duan, R. Guo, Y. Wang, K. Di, L. Wang, Front. Optoelectron. 2022, 15, 1.
- 8E. F. Oliveira, F. C. Lavarda, Polymer 2016, 99, 105.
- 9R. Jin, X. Zhang, W. Xiao, A. Irfan, Theor. Chem. Accounts 2018, 137, 1.
10.1007/s00214-018-2347-4 Google Scholar
- 10F. H. Malk, A. A. H. Abdul Karem, E. H. Al-Tememe, MINAR Int. J. Appl. Sci. Technol. 2022, 4, 174.
- 11B. Fan, L. Ying, P. Zhu, F. Pan, F. Liu, J. Chen, F. Huang, Y. Cao, Adv. Mater. 2017, 29, 7.
- 12M. Sigl, T. Rath, B. Schlemmer, P. Fürk, G. Trimmel, Chem. Monthly 2023, 154, 543.
- 13C. Brouillac, F. Lucas, D. Tondelier, J. Rault-Berthelot, C. Lebreton, E. Jacques, C. Quinton, C. Poriel, Adv. Opt. Mater. 2023, 11, 1.
10.1002/adom.202202191 Google Scholar
- 14S. D. Collins, N. A. Ran, M. C. Heiber, T. Q. Nguyen, Adv. Energy Mater. 2017, 7, 46.
10.1002/aenm.201602242 Google Scholar
- 15Y. Lin, F. Zhao, Q. He, L. Huo, Y. Wu, T. C. Parker, W. Ma, Y. Sun, C. Wang, D. Zhu, A. J. Heeger, S. R. Marder, X. Zhan, J. Am. Chem. Soc. 2016, 138, 4955.
- 16L. Zhu, W. Zhong, C. Qiu, B. Lyu, Z. Zhou, M. Zhang, J. Song, J. Xu, J. Wang, J. Ali, W. Feng, Z. Shi, X. Gu, L. Ying, Y. Zhang, F. Liu, Adv. Mater. 2019, 31, 1.
- 17R. Zhao, N. Wang, Y. Yu, J. Liu, Chem. Mater. 2020, 32, 1308.
- 18W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, J. Hou, Adv. Mater. 2016, 28, 4734.
- 19S. Rafique, S. M. Abdullah, K. Sulaiman, M. Iwamoto, Renew. Sust. Energ. Rev. 2018, 84, 43.
- 20Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170.
- 21G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 2018, 118, 3447.
- 22S. Dey, Small 2019, 15, 1.
10.1002/smll.201900134 Google Scholar
- 23G. Li, R. Zhu, Y. Yang, Nat. Photonics 2012, 6, 153.
- 24Y. Lin, P. Cheng, Y. Li, X. Zhan, Chem. Commun. 2012, 48, 4773.
- 25H. Bürckstümmer, A. Weissenstein, D. Bialas, F. Würthner, J. Org. Chem. 2011, 76, 2426.
- 26R. Jin, K. Wang, Int. J. Mol. Sci. 2015, 16, 20326.
- 27R. Jin, X. Zhang, W. Xiao, Molecules 2020, 25, 1.
- 28W. Li, K. H. Hendriks, A. Furlan, W. S. C. Roelofs, M. M. Wienk, R. A. J. Janssen, J. Am. Chem. Soc. 2013, 135, 18942.
- 29X. Song, N. Gasparini, M. M. Nahid, S. H. K. Paleti, C. Li, W. Li, H. Ade, D. Baran, Adv. Funct. Mater. 2019, 29, 1.
- 30W. Li, K. H. Hendriks, A. Furlan, M. M. Wienk, R. A. J. Janssen, J. Am. Chem. Soc. 2015, 137, 2231.
- 31W. Li, K. H. Hendriks, M. M. Wienk, R. A. J. Janssen, Acc. Chem. Res. 2016, 49, 78.
- 32W. Li, K. H. Hendriks, W. S. C. Roelofs, Y. Kim, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2013, 25, 3182.
- 33A. Negash, Z. Genene, R. Thiruvallur Eachambadi, J. Kesters, N. Van Den Brande, J. D'haen, H. Penxten, B. A. Abdulahi, E. Wang, K. Vandewal, W. Maes, W. Mammo, J. Manca, S. Admassie, J. Mater. Chem. C: Mater. 2019, 7, 3375.
- 34M. Li, J. Li, D. Di Carlo Rasi, F. J. M. Colberts, J. Wang, G. H. L. Heintges, B. Lin, W. Li, W. Ma, M. M. Wienk, R. A. J. Janssen, Adv. Energy Mater. 2018, 8, 1.
- 35X. F. Wu, W. F. Fu, Z. Xu, M. Shi, F. Liu, H. Z. Chen, J. H. Wan, T. P. Russell, Adv. Funct. Mater. 2015, 25, 5954.
- 36P. Gautam, R. Misra, S. A. Siddiqui, G. D. Sharma, ACS Appl. Mater. Interfaces 2015, 7, 10283.
- 37P. Josse, C. Dalinot, Y. Jiang, S. Dabos-Seignon, J. Roncali, P. Blanchard, C. Cabanetos, J. Mater. Chem. A: Mater. 2015, 4, 250.
10.1039/C5TA09171C Google Scholar
- 38B. Yadagiri, K. Narayanaswamy, R. Srinivasa Rao, A. Bagui, R. Datt, V. Gupta, S. P. Singh, ACS Omega 2018, 3, 13365.
- 39C. Zhao, Y. Guo, Y. Zhang, N. Yan, S. You, W. Li, J. Mater. Chem. A: Mater. 2019, 7, 10174.
- 40M. Tong, S. Cho, J. T. Rogers, K. Schmidt, B. B. Y. Hsu, D. Moses, R. C. Coffin, E. J. Kramer, G. C. Bazan, A. J. Heeger, Adv. Funct. Mater. 2010, 20, 3959.
- 41R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Fréchet, M. F. Toney, Macromolecules 2005, 38, 3312.
- 42O. P. Lee, A. T. Yiu, P. M. Beaujuge, C. H. Woo, T. W. Holcombe, J. E. Millstone, J. D. Douglas, M. S. Chen, J. M. J. Fréchet, Adv. Mater. 2011, 23, 5359.
- 43A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf, D. Neher, Adv. Funct. Mater. 2004, 14, 757.
- 44A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- 45R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 720.
- 46M. Huix-Rotllant, N. Ferré, M. Barbatti, in Quantum Chemistry and Dynamics of Excited States: Methods and Applications, 1st ed. (Eds: L. González, R. Lindh), Wiley, New Jersey 2021, p. 15.
- 47T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51.
- 48M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT 2009.
- 49A. Dreuw, M. Wormit, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 82.
- 50K. Eichkorn, O. Treutler, H. Ohm, M. Hiser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283.
- 51R. Ahlrichs, M. Bar, M. H., H. H. Iser, C. Ktjlmel, Chem. Phys. Lett. 1989, 162, 165.
- 52R. Ahlrichs, M. K. Armbruster, R. A. Bachorz, H. Bahmann, A. Baldes, M. Bär, H. P. Baron, R. Bauernschmitt, F. A. Bischoff, S. Böcker, A. M. Burow, G. P. Chen, N. Crawford, P. Deglmann, F. D. Sala, M. Diedenhofen, S. Ehlert, M. Ehrig, K. Eichkorn, S. Elliott, Y. J. Franzke, D. Friese, F. Furche, S. G. Balasubramani, T. Gimon, A. Glöß, N. Graf, L. Grajciar, R. Grotjahn, F. Haase, M. Häser, C. Hättig, A. Hellweg, Be. Helmich, S. Höfener, C. Holzer, H. Horn, C. Huber, W. Hujo, U. Huniar, M. Kattannek, M. Kehry, S. Klawohn, W. Klopper, A. Köhn, C. Kölmel, M. Kollwitz, K. Krause, M. Kühn, R. Łazarski, T. M. Maier, F. Mack, K. May, N. Middendorf, P. Nava, C. Ochsenfeld, H. Öhm, M. Pabst, S. M. Parker, H. Patzelt, A. Pausch, P. Pollak, D. Rappoport, K. Reiter, S. Roy, O. Rubner, A. Schäfer, G. Schmitz, U. Schneider, T. Schwabe, M. Sierka, D. P. Tew, O. Treutler, B. Unterreiner, M. Arnim, V. K. Voora, F. Weigend, P. Weis, H. Weiss and N. Winter, 2007.
- 53S. G. Balasubramani, G. P. Chen, S. Coriani, M. Diedenhofen, M. S. Frank, Y. J. Franzke, F. Furche, R. Grotjahn, M. E. Harding, C. Hättig, A. Hellweg, B. Helmich-Paris, C. Holzer, U. Huniar, M. Kaupp, A. Marefat Khah, S. Karbalaei Khani, T. Müller, F. Mack, B. D. Nguyen, S. M. Parker, E. Perlt, D. Rappoport, K. Reiter, S. Roy, M. Rückert, G. Schmitz, M. Sierka, E. Tapavicza, D. P. Tew, C. Van Wüllen, V. K. Voora, F. Weigend, A. Wodyński, J. M. Yu, J. Chem. Phys. 2020, 152, 184107.
- 54Y. J. Franzke, C. Holzer, J. H. Andersen, T. Begušić, F. Bruder, S. Coriani, F. Della Sala, E. Fabiano, D. A. Fedotov, S. Fürst, S. Gillhuber, R. Grotjahn, M. Kaupp, M. Kehry, M. Krstić, F. Mack, S. Majumdar, B. D. Nguyen, S. M. Parker, F. Pauly, A. Pausch, E. Perlt, G. S. Phun, A. Rajabi, D. Rappoport, B. Samal, T. Schrader, M. Sharma, E. Tapavicza, R. S. Treß, V. Voora, A. Wodyński, J. M. Yu, B. Zerulla, F. Furche, C. Hättig, M. Sierka, D. P. Tew, F. Weigend, J. Chem. Theory Comput. 2023, 19, 6859.
- 55F. Plasser, J. Chem. Phys. 2020, 152, 1.
10.1063/1.5143076 Google Scholar
- 56F. Plasser, TheoDORE: A package for theoretical density. Orbital relaxation and exciton analysis. https://theodore-qc.sourceforge.io/ Accessed January 17, 2024.
- 57A. V. Luzanov, O. V. Prezhdo, Int. J. Quantum Chem. 2005, 102, 582.
- 58F. Plasser, H. Lischka, J. Chem. Theory Comput. 2012, 8, 2777.
- 59H. Li, R. Nieman, A. J. A. Aquino, H. Lischka, S. Tretiak, J. Chem. Theory Comput. 2014, 10, 3280.
- 60M. Caricato, G. W. Trucks, M. J. Frisch, K. B. Wiberg, J. Chem. Theory Comput. 2011, 7, 456.
- 61M. T. do Casal, J. M. Toldo, F. Plasser, M. Barbatti, Phys. Chem. Chem. Phys. 2022, 24, 23279.
- 62S. Grimme, M. Waletzke, J. Chem. Phys. 1999, 111, 5645.
- 63C. M. Marian, A. Heil, M. Kleinschmidt, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2019, 9, 1.
- 64F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73.
- 65F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, 1.
- 66F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 67A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
- 68A. Heil, M. Kleinschmidt, C. M. Marian, J. Chem. Phys. 2018, 149, 164106.
- 69M. Head-Gordon, A. M. Grana, D. Maurice, C. A. White, J. Phys. Chem. 1995, 99, 14261.
- 70D. Demeter, T. Rousseau, P. Leriche, T. Cauchy, R. Po, J. Roncali, Adv. Funct. Mater. 2011, 21, 4379.
- 71M. E. Ragoussi, T. Torres, Rev. Virtual Quim. 2015, 7, 112.
10.5935/1984-6835.20150007 Google Scholar
- 72H. Sahu, H. Ma, J. Phys. Chem. Lett. 2019, 10, 7277.
- 73H. Sahu, W. Rao, A. Troisi, H. Ma, Adv. Energy Mater. 2018, 8, 1.
- 74O. Ostroverkhova, Chem. Rev. 2016, 116, 13279.
- 75 ASTM Standard G173-03, Standard Tables for Reference Solar SpectralIrradiances: Direct Normal and Hemispherical on 37° Tilted Surface, ASTM, West Conshohocken, PA 2020.
- 76B. Qi, Q. Zhou, J. Wang, Sci. Rep. 2015, 5, 1.
- 77M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.
- 78T. Niinomi, Y. Matsuo, M. Hashiguchi, Y. Sato, E. Nakamura, J. Mater. Chem. 2009, 19, 5804.
- 79U. Azeem, R. A. Khera, A. Naveed, M. Imran, M. A. Assiri, M. Khalid, J. Iqbal, ACS Omega 2021, 6, 28923.
- 80L. Zhang, W. Shen, R. He, X. Liu, X. Tang, Y. Yang, M. Li, Org. Electron. 2016, 32, 134.
- 81M. A. Green, Solid State Electron. 1981, 24, 788.
- 82J. L. Bredas, Mater. Horiz. 2014, 1, 17.
- 83Y. Zhu, F. Zhao, W. Wang, Y. Li, S. Zhang, Y. Lin, Adv. Energy Sustainability Res. 2022, 3, 2100184.
- 84R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 1983, 105, 7512.
- 85R. G. Pearson, Proc. Natl. Acad. Sci. USA 1986, 83, 8440.
- 86P. K. Chattaraj, D. R. Roy, Chem. Rev. 2007, 107, 46.
- 87J. L. Gázquez, A. Cedillo, A. Vela, J. Phys. Chem. A 2007, 111, 1966.
- 88R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 1977, 68, 3801.
- 89R. Jin, K. Li, X. Han, RSC Adv. 2019, 9, 22597.
- 90J. E. Coughlin, Z. B. Henson, G. C. Welch, G. C. Bazan, Acc. Chem. Res. 2014, 47, 257.
- 91E. Lim, Bull. Korean Chem. Soc. 2020, 41, 639.
- 92C. Liu, K. Wang, X. Gong, A. J. Heeger, Chem. Soc. Rev. 2016, 45, 4825.
- 93M. J. Hollas, Modern Spectrocsopy, 4th ed., John Wiley & Sons Ltd, Hoboken, New Jersey 2004.
- 94L. Benatto, K. R. D. A. Sousa, M. Koehler, J. Phys. Chem. C 2020, 124, 13580.
- 95K. H. Hendriks, A. S. G. Wijpkema, J. J. Van Franeker, M. M. Wienk, R. A. J. Janssen, J. Am. Chem. Soc. 2016, 138, 10026.
- 96M. D. Halls, P. J. Djurovich, D. J. Giesen, A. Goldberg, J. Sommer, E. McAnally, M. E. Thompson, New J. Phys. 2013, 15, 1.
10.1088/1367-2630/15/10/105029 Google Scholar
- 97H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607.
- 98J. L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971.
- 99G. Monteiro-de-Castro, I. Borges, J. Comput. Chem. 2023, 44, 2256.
- 100C. Zanlorenzi, L. Akcelrud, J. Polym. Sci. B: Polym. Phys. 2017, 55, 919.
- 101N. Bérubé, V. Gosselin, J. Gaudreau, M. Côté, J. Phys. Chem. C 2013, 117, 7964.
- 102C. Liu, L. Yin, Y. Guo, B. Xie, X. Wang, Y. Li, Mater. Adv. 2024, 5, 762.
- 103W. Shin, J. H. Park, G. E. Lim, N. Sylvianti, B. H. Ahn, J. H. Kim, Synth. Met. 2015, 210, 201.
- 104J. W. Jung, Dyes Pigments 2017, 137, 512.
- 105D. E. Dikbıyık, O. Karakurt, D. Cevher, G. H. Ozsoy, E. Yıldırım, A. Cirpan, Polymer 2024, 294, 126696.
- 106T. M. Clarke, J. R. Durrant, Chem. Rev. 2010, 110, 6736.
- 107J. Nelson, Curr. Opin. Solid State Mater. Sci. 2002, 6, 87.
- 108J. C. Bernède, J. Chil. Chem. Soc. 2008, 53, 1549.
- 109Z. Liang, L. Yan, J. Si, P. Gong, X. Li, D. Liu, J. Li, X. Hou, Materials 2021, 14, 1.
- 110M. Khalid, M. Khan, I. Shafiq, K. Mahmood, M. Nadeem Akhtar, J. Iqbal, M. A. Assiri, M. Imran, A. A. C. Braga, Heliyon 2023, 9, e13033.
- 111S. J. Akram, N. M. A. Hadia, J. Iqbal, R. F. Mehmood, S. Iqbal, A. M. Shawky, A. Asif, H. H. Somaily, M. Raheel, R. A. Khera, RSC Adv. 2022, 12, 20792.
- 112A. Rasool, S. Zahid, M. Ans, S. Muhammad, K. Ayub, J. Iqbal, ACS Omega 2022, 7, 844.
- 113E. F. Oliveira, F. C. Lavarda, Mater. Chem. Phys. 2014, 148, 923.
- 114N. M. P. Rosa, I. Borges Jr, DPP_D_A_D_systems_Charge_Transfer: DPP_D_A_D_systems_Charge_Transfer. https://doi.org/10.5281/zenodo.10722176
10.5281/zenodo.10722176 Google Scholar
Citing Literature
December 15, 2024
Pages 2885-2898