An influence of electronic structure theory method, thermodynamic and implicit solvation corrections on the organic carbonates conformational and binding energies
Alexander S. Ryzhako
N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
The Faculty of Natural Sciences, Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
Search for more papers by this authorAnna A. Tuma
N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
Search for more papers by this authorArseniy A. Otlyotov
N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
Search for more papers by this authorCorresponding Author
Yury Minenkov
N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
Correspondence
Yury Minenkov, N.N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, Moscow 119991, Russian Federation.
Email: [email protected]
Search for more papers by this authorAlexander S. Ryzhako
N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
The Faculty of Natural Sciences, Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
Search for more papers by this authorAnna A. Tuma
N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
Search for more papers by this authorArseniy A. Otlyotov
N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
Search for more papers by this authorCorresponding Author
Yury Minenkov
N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
Correspondence
Yury Minenkov, N.N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, Moscow 119991, Russian Federation.
Email: [email protected]
Search for more papers by this authorAbstract
An impact of an electronic structure or force field method, gas-phase thermodynamic correction, and continuum solvation model on organic carbonate clusters (S)n conformational and binding energies is explored. None of the tested force field (GFN-FF, GAFF, MMFF94) and standard semiempirical methods (PM3, AM1, RM1, PM6, PM6-D3, PM6-D3H4, PM7) can reproduce reference RI-SCS-MP2 conformational energies. Tight-binding GFNn-xTB methods provide more realistic conformational energies which are accurate enough to discard the least stable conformers. The effect of thermodynamic correction is moderate and can be ignored if the gas phase conformational stability ranking is a goal. The influence of continuum solvation is stronger, especially if reinforced with the Gibbs free energy thermodynamic correction, and results in the reduced spread of conformational energies. The cluster formation binding energies strongly depend on a particular approach to vibrational thermochemistry with the difference between traditional harmonic and modified scaled rigid – harmonic oscillator approximations reaching 10 kcal mol−1.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the supporting information of this article. The thermochemistry code enabling both standard harmonic oscillator and msRRHO calculations is available for download free of charge at https://github.com/QuantumChemistryGroup/thermochemistry.
Supporting Information
Filename | Description |
---|---|
jcc27471-sup-0001-Supinfo1.docxWord 2007 document , 2.9 MB | Data S1. Supporting Information. |
jcc27471-sup-0002-Supinfo2.zipZip archive, 1,002.7 KB | Data S2. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1E. Westphal, J. R. Pliego, J. Chem. Phys. 2005, 123, 74508.
- 2V. S. Bryantsev, M. S. Diallo, W. A. Goddard III., J. Phys. Chem. B 2008, 112, 9709.
- 3N. F. Carvalho, J. R. Pliego, Phys. Chem. Chem. Phys. 2015, 17, 26745.
- 4J. R. Pliego, J. M. Riveros, J. Phys. Chem. A 2001, 105, 7241.
- 5P. Grabowski, D. Riccardi, M. A. Gomez, D. Asthagiri, L. R. Pratt, J. Phys. Chem. A 2002, 106, 9145.
- 6D. Asthagiri, L. R. Pratt, H. S. Ashbaugh, J. Chem. Phys. 2003, 119, 2702.
- 7J. R. Pliego, E. L. M. Miguel, J. Phys. Chem. B 2013, 117, 5129.
- 8L. Tomaník, E. Muchová, P. Slavíček, Phys. Chem. Chem. Phys. 2020, 22, 22357.
- 9J. R. Pliego, J. Chem. Phys. 2017, 147, 34104.
- 10V. C. Rufino, J. R. Pliego, Phys. Chem. Chem. Phys. 2021, 23, 26902.
- 11D. G. Kwabi, V. S. Bryantsev, T. P. Batcho, D. M. Itkis, C. V. Thompson, Y. Shao-Horn, Angew. Chem. Int. Ed. 2016, 55, 3129.
- 12F. Weinhold, J. Chem. Phys. 1998, 109, 373.
- 13J. Maya, A. Malloum, J. J. Fifen, Z. Dhaouadi, H. P. E. Fouda, J. Conradie, J. Comput. Chem. 2024, 45, 1279. https://doi.org/10.1002/JCC.27327
- 14A. Malloum, J. Conradie, J. Mol. Graph. Model. 2024, 126, 108661.
- 15A. Malloum, Z. Dhaouadi, J. Conradie, J. Mol. Liq. 2023, 387, 122562.
- 16G. Matisz, A. M. Kelterer, W. M. F. Fabian, S. Kunsági-Máté, Phys. Chem. Chem. Phys. 2015, 17, 8467.
- 17M. Brüssel, E. Perlt, S. B. C. Lehmann, M. Von Domaros, B. Kirchner, J. Chem. Phys. 2011, 135, 194113.
- 18J. Ingenmey, M. Von Domaros, E. Perlt, S. P. Verevkin, B. Kirchner, J. Chem. Phys. 2018, 148, 193822.
- 19P. Pracht, F. Bohle, S. Grimme, Phys. Chem. Chem. Phys. 2020, 22, 7169.
- 20P. Pracht, S. Grimme, C. Bannwarth, F. Bohle, S. Ehlert, G. Feldmann, J. Gorges, M. Müller, T. Neudecker, C. Plett, S. Spicher, P. Steinbach, P. A. Wesołowski, F. Zeller, J. Chem. Phys. 2024, 160, 114110. https://doi.org/10.1063/5.0197592
- 21C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652.
- 22C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1493.
- 23S. Spicher, S. Grimme, Angew. Chem. 2020, 132, 15795.
10.1002/ange.202004239 Google Scholar
- 24J. Zhang, M. Dolg, Phys. Chem. Chem. Phys. 2015, 17, 24173.
- 25J. Zhang, M. Dolg, Phys. Chem. Chem. Phys. 2016, 18, 3003.
- 26J. Zhang, V. A. Glezakou, Int. J. Quantum Chem. 2021, 121, e26553.
- 27K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. Mackerell, J. Comput. Chem. 2010, 31, 671.
- 28J. J. Fifen, N. Agmon, J. Chem. Theory Comput. 2016, 12, 1656.
- 29C. Plett, S. Grimme, A. Hansen, J. Comput. Chem. 2024, 45, 419.
- 30S. Ehlert, S. Grimme, A. Hansen, J. Phys. Chem. A 2022, 126, 3521.
- 31D. I. Sharapa, A. Genaev, L. Cavallo, Y. Minenkov, ChemPhysChem 2019, 20, 92.
- 32A. A. Otlyotov, Y. Minenkov, J. Comput. Chem. 2022, 43, 1856.
- 33M. Bursch, A. Hansen, P. Pracht, J. T. Kohn, S. Grimme, Phys. Chem. Chem. Phys. 2021, 23, 287.
- 34Y. Minenkov, D. I. Sharapa, L. Cavallo, J. Chem. Theory Comput. 2018, 14, 3428.
- 35A. A. Otlyotov, A. D. Moshchenkov, L. Cavallo, Y. Minenkov, Phys. Chem. Chem. Phys. 2022, 24, 17314.
- 36I. Stylianakis, N. Zervos, J. H. Lii, D. A. Pantazis, A. Kolocouris, J. Comput. Aided Mol. Des. 2023, 37, 607.
- 37O. Gutten, P. Jurečka, Z. Aliakbar Tehrani, M. Buděšínský, J. Řezáč, L. Rulíšek, Phys. Chem. Chem. Phys. 2021, 23, 7280.
- 38J. Řezáč, D. Bím, O. Gutten, L. Rulíšek, J. Chem. Theory Comput. 2018, 14, 1254.
- 39P. Wang, C. Shu, H. Ye, M. Biczysko, J. Phys. Chem. A 2021, 125, 9826.
- 40M. Kabeláč, H. Valdes, E. C. Sherer, C. J. Cramer, P. Hobza, Phys. Chem. Chem. Phys. 2007, 9, 5000.
- 41H. Valdes, K. Pluháčková, M. Pitonák, J. Řezáč, P. Hobza, Phys. Chem. Chem. Phys. 2008, 10, 2747.
- 42Y. Li, S. Zhang, J. Z. H. Zhang, X. He, Chem. Phys. Lett. 2016, 652, 136.
- 43M. K. Kesharwani, A. Karton, J. M. L. Martin, J. Chem. Theory Comput. 2016, 12, 444.
- 44N. Mehta, T. Fellowes, J. M. White, L. Goerigk, J. Chem. Theory Comput. 2021, 17, 2783.
- 45J. L. Whitten, J. Chem. Phys. 1973, 58, 4496.
- 46B. I. Dunlap, J. W. D. Connolly, J. R. Sabin, B. I. Dunlapa, J. W. D. Connolly, J. R. Sabin, J. Chem. Phys. 1979, 71, 3396.
- 47O. Vahtras, J. Almlöf, M. W. Feyereisen, Chem. Phys. Lett. 1993, 213, 514.
- 48M. Gerenkamp, S. Grimme, Chem. Phys. Lett. 2004, 392, 229.
- 49C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
- 50B. W. Kernighan, D. M. Ritchie, The C Programming Language, Prentice Hall Professional Technical Reference, Upper Saddle River, New Jersey 1988.
- 51A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024.
- 52S. G. Johnson, NLopt. 2014. http://ab-initio.mit.edu/nlopt
- 53M. W. Walker, L. Shao, R. A. Volz, CVGIP Image Underst. 1991, 54, 358.
- 54W. Kabsch, Acta Crystallogr. Sect. A 1976, 32, 922.
- 55 GitHub - charnley/rmsd: Calculate Root-mean-square deviation (RMSD) of two molecules, using rotation, in xyz or pdb format. can be found under https://github.com/charnley/rmsd n.d.
- 56J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 57J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
- 58S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 59S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 60F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
- 61F. Neese, Wiley Interdiscip. Rev. Mol. Sci. 2012, 2, 73.
- 62F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606.
- 63F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 64F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057.
- 65S. Grimme, Chem. Eur. J. 2012, 18, 9955.
- 66P. Pracht, S. Grimme, Chem. Sci. 2021, 12, 6551.
- 67A. A. Otlyotov, Y. Minenkov, J. Comput. Chem. 2023, 44, 1807.
- 68D. Bakowies, O. A. Von Lilienfeld, J. Chem. Theory Comput. 2021, 17, 4872.
- 69A. Hellweg, C. Hättig, S. Hoefener, W. Klopper, Theor. Chem. Accounts 2007, 117, 587.
- 70Y. Minenkov, L. Cavallo, K. A. Peterson, J. Comput. Chem. 2023, 44, 687.
- 71D. Feller, K. A. Peterson, J. Grant Hill, J. Chem. Phys. 2011, 135, 44102.
- 72J. M. L. Martin, Chem. Phys. Lett. 1996, 259, 669.
- 73N. Mardirossian, M. Head-Gordon, J. Chem. Phys. 2016, 144, 214110.
- 74Y. Zhao, D. G. Truhlar, Theor. Chem. Accounts 2008, 120, 215.
- 75A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- 76C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- 77S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
- 78C. Adamo, V. Barone, Chem. Phys. Lett. 1997, 274, 242.
- 79C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
- 80E. Caldeweyher, C. Bannwarth, S. Grimme, J. Chem. Phys. 2017, 147, 34112.
- 81F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98.
- 82S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput. 2017, 13, 1989.
- 83M. J. S. Dewar, W. Thiel, J. Am. Chem. Soc. 1977, 99, 4899.
- 84M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902.
- 85J. J. P. Stewart, J. Comput. Chem. 1989, 10, 209.
- 86G. B. Rocha, R. O. Freire, A. M. Simas, J. J. P. Stewart, J. Comput. Chem. 2006, 27, 1101.
- 87J. J. P. Stewart, J. Mol. Model. 2007, 13, 1173.
- 88B. Vorlová, D. Nachtigallová, J. Jirásková-Vaníčková, H. Ajani, P. Jansa, J. Řezáč, J. Fanfrlík, M. Otyepka, P. Hobza, J. Konvalinka, M. Lepšík, Eur. J. Med. Chem. 2015, 89, 189.
- 89J. J. P. Stewart, J. Mol. Model. 2013, 19, 1.
- 90J. J. P. Stewart, MOPAC2016. 2016. http://openmopac.net
- 91T. A. Halgren, J. Comput. Chem. 1996, 17, 490.
- 92T. A. Halgren, J. Comput. Chem. 1996, 17, 520.
- 93J. A. Rackers, Z. Wang, C. Lu, M. L. Laury, L. Lagardère, M. J. Schnieders, J.-P. Piquemal, P. Ren, J. W. Ponder, J. Chem. Theory Comput. 2018, 14, 5273.
- 94N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, Aust. J. Chem. 2011, 3, 33.
- 95P. Tosco, T. Balle, F. Shiri, J. Mol. Model. 2011, 17, 3021.
- 96J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157.
- 97S. F. Vyboishchikov, A. A. Voityuk, J. Comput. Chem. 2021, 42, 1184.
- 98A. V. Marenich, S. V. Jerome, C. J. Cramer, D. G. Truhlar, J. Chem. Theory Comput. 2012, 8, 527.
- 99K. Duanmu, D. G. Truhlar, J. Phys. Chem. C 2014, 118, 28069.
- 100K. Duanmu, B. Wang, A. V. Marenich, C. J. Cramer, D. G. Truhlar, CM5PAC version 2015. 2015.
- 101Y. Minenkov, J. Chem. Theory Comput. 2023, 19, 5221.