Improved Modeling of Cation-π and Anion-Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins
Fang-Yu Lin
Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201
Search for more papers by this authorCorresponding Author
Alexander D. MacKerell Jr
Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201
E-mail: [email protected]Search for more papers by this authorFang-Yu Lin
Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201
Search for more papers by this authorCorresponding Author
Alexander D. MacKerell Jr
Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201
E-mail: [email protected]Search for more papers by this authorAbstract
Cation-π interactions are noncovalent interactions between a π-electron system and a positively charged ion that are regarded as a strong noncovalent interaction and are ubiquitous in biological systems. Similarly, though less studied, anion-ring interactions are present in proteins along with in-plane interactions of anions with aromatic rings. As these interactions are between a polarizing ion and a polarizable π system, the accuracy of the treatment of these interactions in molecular dynamics (MD) simulations using additive force fields (FFs) may be limited. In the present work, to allow for a better description of ion-π interactions in proteins in the Drude-2013 protein polarizable FF, we systematically optimized the parameters for these interactions targeting model compound quantum mechanical (QM) interaction energies with atom pair-specific Lennard-Jones parameters along with virtual particles as selected ring centroids introduced to target the QM interaction energies and geometries. Subsequently, MD simulations were performed on a series of protein structures where ion-π pairs occur to evaluate the optimized parameters in the context of the Drude-2013 FF. The resulting FF leads to a significant improvement in reproducing the ion-π pair distances observed in experimental protein structures, as well as a smaller root-mean-square differences and fluctuations of the overall protein structures from experimental structures. Accordingly, the optimized Drude-2013 protein polarizable FF is suggested for use in MD simulations of proteins where cation-π and anion-ring interactions are critical. © 2019 Wiley Periodicals, Inc.
Conflict of Interest
A.D.M. is co-founder and CSO of SilcsBio LLC.
Supporting Information
Filename | Description |
---|---|
jcc26067-sup-0001-AppendixS1.pdfPDF document, 3.4 MB | Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. P. Gallivan, D. A. Dougherty, PNAS. 1999, 96, 9459.
- 2R. Wintjens, J. Liévin, M. Rooman, E. Buisine, J. Mol. Biol. 2000, 302, 393.
- 3M. M. Gromiha, C. Santhosh, S. Ahmad, Int. J. Biol. Macromol. 2004, 34, 203.
- 4C. Biot, E. Buisine, M. Rooman, J. Am. Chem. Soc. 2003, 125, 13988.
- 5Y. Mo, G. Subramanian, J. Gao, D. M. Ferguson, J. Am. Chem. Soc. 2002, 124, 4832.
- 6R. A. Kumpf, D. A. Dougherty, Science 1993, 261, 1708.
- 7O. M. Cabarcos, C. J. Weinheimer, J. M. Lisy, J. Chem. Phys. 1999, 110, 8429.
- 8R. S. Prajapati, M. Sirajuddin, V. Durani, S. Sreeramulu, R. Varadarajan, Biochemistry 2006, 45, 15000.
- 9C. R. Kennedy, S. Lin, E. N. Jacobsen, Angew. Chem. Int. Ed. Engl. 2016, 55, 12596.
- 10D. L. Beene, G. S. Brandt, W. Zhong, N. M. Zacharias, H. A. Lester, D. A. Dougherty, Biochemistry 2002, 41, 10262.
- 11K. Gruber, B. Zhou, K. N. Houk, R. A. Lerner, C. G. Shevlin, I. A. Wilson, Biochemistry 1999, 38, 7062.
- 12S.-M. Liao, Q.-S. Du, J.-Z. Meng, Z.-W. Pang, R.-B. Huang, Chem. Cent. J. 2013, 7, 44.
- 13I. A. Tayubi, R. Sethumadhavan, Biochemistry (Moscow). 2010, 75, 912.
- 14M. M. Slutsky, E. N. G. Marsh, Protein Sci. 2004, 13, 2244.
- 15H.-J. Schneider, F. Werner, T. Blatter, J. Phys. Org. Chem. 1993, 6, 590.
- 16D. Quiñonero, C. Garau, C. Rotger, A. Frontera, P. Ballester, A. Costa, P. M. Deyà, Angew. Chem. Int. Ed. 2002, 41, 3389.
10.1002/1521-3773(20020916)41:18<3389::AID-ANIE3389>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 17C. Garau, D. Quiñonero, A. Frontera, P. Ballester, A. Costa, P. M. Deyà, J. New, Chem 2003, 27, 211.
- 18B. L. Schottel, H. T. Chifotides, K. R. Dunbar, Chem. Soc. Rev. 2008, 37, 68.
- 19M. Mascal, A. Armstrong, M. D. Bartberger, J. Am. Chem. Soc. 2002, 124, 6274.
- 20D. Kim, P. Tarakeshwar, K. S. Kim, J. Phys. Chem. A 2004, 108, 1250.
- 21C. Estarellas, A. Frontera, D. Quiñonero, P. M. Deyà, Angew. Chem. Int. Ed. 2011, 50, 415.
- 22M. V. Zlatović, S. Z. Borozan, M. R. Nikolić, S. Đ. Stojanović, RSC Adv. 2015, 5, 38361.
- 23S. Chakravarty, A. R. Ung, B. Moore, J. Shore, M. Alshamrani, Biochemistry 2018, 57, 1852.
- 24V. Philip, J. Harris, R. Adams, D. Nguyen, J. Spiers, J. Baudry, E. E. Howell, R. J. Hinde, Biochemistry 2011, 50, 2939.
- 25X. Lucas, A. Bauzá, A. Frontera, D. Quiñonero, Chem. Sci. 2016, 7, 1038.
- 26A. Robertazzi, F. Krull, E.-W. Knapp, P. Gamez, CrstEngComm 2011, 13, 3293.
- 27D. D. Jenkins, J. B. Harris, E. E. Howell, R. J. Hinde, J. Baudry, J. Comput. Chem. 2013, 34, 518.
- 28A. D. MacKerell, Jr., J. Comput. Chem. 2004, 25, 1584.
- 29J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, C. Simmerling, J. Chem. Theory Comput. 2015, 11, 3696.
- 30R. Galindo-Murillo, J. C. Robertson, M. Zgarbová, J. Šponer, M. Otyepka, P. Jurečka, T. E. Cheatham, J. Chem. Theory Comput. 2016, 12, 4114.
- 31C. J. Dickson, B. D. Madej, Å. A. Skjevik, R. M. Betz, K. Teigen, I. R. Gould, R. C. Walker, J. Chem. Theory Comput. 2014, 10, 865.
- 32M. J. Robertson, J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory Comput. 2015, 11, 3499.
- 33M. J. Robertson, Y. Qian, M. C. Robinson, J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory Comput. 2019, 15, 2734.
- 34M. M. Reif, P. H. Hünenberger, C. Oostenbrink, J. Chem. Theory Comput. 2012, 8, 3705.
- 35T. A. Soares, P. H. Hünenberger, M. A. Kastenholz, V. Kräutler, T. Lenz, R. D. Lins, C. Oostenbrink, W. F. van Gunsteren, J. Comput. Chem. 2005, 26, 725.
- 36D. Poger, W. F. V. Gunsteren, A. E. Mark, J. Comput. Chem. 2010, 31, 1117.
- 37R. B. Best, X. Zhu, J. Shim, P. E. M. Lopes, J. Mittal, M. Feig, A. D. MacKerell, Jr., J. Chem. Theory Comput. 2012, 8, 3257.
- 38J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de Groot, H. Grubmüller, A. D. MacKerell, Jr., Nat. Methods 2017, 14, 71.
- 39R. W. Pastor, A. D. MacKerell, J. Phys. Chem. Lett. 2011, 2, 1526.
- 40J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O'Connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell, Jr., R. W. Pastor, J. Phys. Chem. B 2010, 114, 7830.
- 41O. Guvench, S. S. Mallajosyula, E. P. Raman, E. Hatcher, K. Vanommeslaeghe, T. J. Foster, F. W. Jamison, A. D. MacKerell, Jr., J. Chem. Theory Comput. 2011, 7, 3162.
- 42K. Hart, N. Foloppe, C. M. Baker, E. J. Denning, L. Nilsson, A. D. MacKerell, Jr., J. Chem. Theory Comput. 2012, 8, 348.
- 43C. Chipot, B. Maigret, D. A. Pearlman, P. A. Kollman, J. Am. Chem. Soc. 1996, 118, 2998.
- 44F. Archambault, C. Chipot, I. Soteras, F. J. Luque, K. Schulten, F. Dehez, J. Chem. Theory Comput. 2009, 5, 3022.
- 45H. Minoux, C. Chipot, J. Am. Chem. Soc. 1999, 121, 10366.
- 46F. N. R. Petersen, M. Ø. Jensen, C. H. Nielsen, Biophys. J. 2005, 89, 3985.
- 47H. M. Khan, A. D. MacKerell, Jr., N. Reuter, J. Chem. Theory Comput. 2018, 15, 7.
- 48H. M. Khan, C. Grauffel, R. Broer, A. D. MacKerell, Jr., R. W. A. Havenith, N. Reuter, J. Chem. Theory Comput. 2016, 12, 5585.
- 49C. R. Rupakheti, B. Roux, F. Dehez, C. Chipot, Theor Chem Acc. 2018, 137, 174.
- 50J. W. Caldwell, P. A. Kollman, J. Am. Chem. Soc. 1995, 117, 4177.
- 51J. Huang, P. E. M. Lopes, B. Roux, A. D. MacKerell, Jr., J. Phys. Chem. Lett. 2014, 5, 3144.
- 52P. E. M. Lopes, O. Guvench, A. D. MacKerell, Jr., Methods Mol. Biol. 2015, 1215, 47.
- 53Y. Shi, P. Ren, M. Schnieders, J.-P. Piquemal, In Reviews in Computational Chemistry, Vol. 28; A. L. Parrill, K. B. Lipkowitz, Eds., John Wiley & Sons, Hoboken, NJ, 2015, p. 51.
- 54P. Xu, J. Wang, Y. Xu, H. Chu, J. Liu, M. Zhao, D. Zhang, Y. Mao, B. Li, Y. Ding, G. Li, Adv. Exp. Med. Biol. 2015, 827, 19.
- 55C. M. Baker, WIREs Comput Mol Sci. 2015, 5, 241.
- 56J. A. Lemkul, J. Huang, B. Roux, A. D. MacKerell, Jr., Chem. Rev. 2016, 116, 4983.
- 57C. Schröder, Phys. Chem. Chem. Phys. 2012, 14, 3089.
- 58N. Panel, F. Villa, E. J. Fuentes, T. Simonson, Biophys. J. 2018, 114, 1091.
- 59X. Zheng, C. Wu, J. W. Ponder, G. R. Marshall, J. Am. Chem. Soc. 2012, 134, 15970.
- 60J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio, M. Head-Gordon, G. N. I. Clark, M. E. Johnson, T. Head-Gordon, J. Phys. Chem. B 2010, 114, 2549.
- 61E. A. Orabi, G. Lamoureux, J. Chem. Theory Comput. 2012, 8, 182.
- 62G. Lamoureux, A. D. MacKerell, Jr., B. Roux, J. Chem. Phys. 2003, 119, 5185.
- 63W. Yu, P. E. M. Lopes, B. Roux, A. D. MacKerell, Jr., J. Chem. Phys. 2013, 138, 034508.
- 64E. Harder, V. M. Anisimov, T. Whitfield, A. D. MacKerell, Jr., B. Roux, J. Phys. Chem. B 2008, 112, 3509.
- 65P. E. M. Lopes, G. Lamoureux, A. D. MacKerell, Jr., J. Comput. Chem. 2009, 30, 1821.
- 66M. C. Small, A. H. Aytenfisu, F.-Y. Lin, X. He, A. D. MacKerell, Jr., J. Comput. Aided Mol. Des. 2017, 31, 349.
- 67I. V. Vorobyov, V. M. Anisimov, A. D. MacKerell, Jr., J. Phys. Chem. B 2005, 109, 18988.
- 68X. Zhu, A. D. MacKerell, Jr., J. Comput. Chem. 2010, 31, 2330.
- 69P. E. M. Lopes, J. Huang, J. Shim, Y. Luo, H. Li, B. Roux, A. D. MacKerell, Jr., J. Chem. Theory Comput. 2013, 9, 5430.
- 70A. Savelyev, A. D. MacKerell, Jr., J. Comput. Chem. 2014, 35, 1219.
- 71J. A. Lemkul, A. D. MacKerell, Jr., J. Chem. Theory Comput. 2017, 13, 2072.
- 72J. A. Lemkul, A. D. MacKerell, Jr., J. Comput. Chem. 2018, 39, 2624.
- 73J. Chowdhary, E. Harder, P. E. M. Lopes, L. Huang, A. D. MacKerell, Jr., B. Roux, J. Phys. Chem. B 2013, 117, 9142.
- 74H. Li, J. Chowdhary, L. Huang, X. He, A. D. MacKerell, Jr.., B. Roux, J. Chem. Theory Comput. 2017, 13, 4535.
- 75G. Lamoureux, B. Roux, J. Chem. Phys. 2003, 119, 3025.
- 76E. A. Orabi, G. Lamoureux, J. Phys. Chem. B 2018, 122, 2251.
- 77C. M. Baker, P. E. M. Lopes, X. Zhu, B. Roux, A. D. MacKerell, Jr., J. Chem. Theory Comput. 2010, 6, 1181.
- 78D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 1993, 98, 1358.
- 79Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A. Gaussian 03, Revision D.02, Gaussian, Inc., Wallingford, CT, 2004.
- 80E. G. Hohenstein, C. D. Sherrill, J. Chem. Phys. 2010, 133, 014101.
- 81J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A. Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L. Abrams, N. J. Russ, M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D. Allen, H. F. Schaefer, R. A. King, E. F. Valeev, C. D. Sherrill, T. D. Crawford, WIREs Comput Mol Sci. 2012, 2, 556.
- 82S. Boys, F. Bernardi, Molecul Phys. 1970, 19, 553.
- 83A. T. Pudzianowski, J. Chem. Phys. 1995, 102, 8029.
- 84F.-Y. Lin, A. D. MacKerell, Jr., J. Chem. Inf. Model. 2019, 59, 215.
- 85B. R. Brooks, C. L. Brooks, III., A. D. Mackerell, Jr.., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem. 2009, 30, 1545.
- 86B. R. Brooks, R. E. Bruccoleri, D. J. Olafson, D. J. States, S. Swaminathan, M. Karplus, J. Comput. Chem. 1983, 4, 187.
- 87 A. D. MacKerell, C. L. Brooks, L. Nilsson, B. Roux, Y. Won, M. Karplus, P. V. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer, P. R. Schreiner, Eds., The Encyclopedia of Computational Chemistry, Vol. 1, John Wiley & Sons, Chichester, OH, 1998, p. 271.
- 88J. C. Phillips, J. Comput, Chem 1781–1802, 2005, 26.
- 89W. Jiang, D. J. Hardy, J. C. Phillips, A. D. MacKerell, Jr.., K. Schulten, B. Roux, J. Phys. Chem. Lett. 2011, 2, 87.
- 90P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, T. Tye, M. Houston, T. Stich, C. Klein, M. R. Shirts, V. S. Pande, J. Chem. Theory Comput. 2013, 9, 461.
- 91J. Huang, J. A. Lemkul, P. K. Eastman, A. D. MacKerell, Jr., J. Comput. Chem. 2018, 39, 1682.
- 92H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 2000, 28, 235.
- 93H. L. Frericks Schmidt, L. J. Sperling, Y. G. Gao, B. J. Wylie, J. M. Boettcher, S. R. Wilson, C. M. Rienstra, J. Phys. Chem. B 2007, 111, 14362.
- 94H. Ago, Y. Kitagawa, A. Fujishima, Y. Matsuura, J. Biochem. (Tokyo). 1991, 110, 360.
- 95E. S. Withers-Ward, T. D. Mueller, I. S. Y. Chen, J. Feigon, Biochemistry 2000, 39, 14103.
- 96A. C. M. Young, J. C. Dewan, C. Nave, R. F. Tilton, J. Appl. Cryst. 1993, 26, 309.
- 97K. Harata, Acta Cryst D. 1993, 49, 497.
- 98N. H. Andersen, K. A. Olsen, R. M. Fesinmeyer, X. Tan, F. M. Hudson, L. A. Eidenschink, S. R. Farazi, J. Am. Chem. Soc. 2006, 128, 6101.
- 99S. Jo, T. Kim, V. G. Iyer, W. Im, J. Comput. Chem. 2008, 29, 1859.
- 100G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, A. D. MacKerell, Jr., Chem. Phys. Lett. 2006, 418, 245.
- 101H. Yu, T. W. Whitfield, E. Harder, G. Lamoureux, I. Vorobyov, V. M. Anisimov, A. D. MacKerell, Jr., B. Roux, J. Chem. Theory Comput. 2010, 6, 774.
- 102Y. Luo, W. Jiang, H. Yu, A. D. MacKerell, Jr., B. Roux, Faraday Discuss. 2013, 160, 135.
- 103J.-P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, J. Comput. Phys. 1977, 23, 327.
- 104P. J. Steinbach, B. R. Brooks, J. Comput. Chem. 1994, 15, 667.
- 105T. Darden, D. York, L. Pedersen, J. Chem. Phys. 1993, 98, 10089.
- 106U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, J. Chem. Phys. 1995, 103, 8577.
- 107M. Jana, A. D. MacKerell, Jr., J. Phys. Chem. B 2015, 119, 7846.
- 108F.-Y. Lin, A. D. MacKerell, Jr., J. Chem. Theory Comput. 2018, 14, 1083.