Water in Ras Superfamily Evolution
Kendra Marcus
Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts, 02115
Search for more papers by this authorCorresponding Author
Carla Mattos
Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts, 02115
Correspondence to: Carla Mattos E-mail: [email protected]Search for more papers by this authorKendra Marcus
Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts, 02115
Search for more papers by this authorCorresponding Author
Carla Mattos
Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts, 02115
Correspondence to: Carla Mattos E-mail: [email protected]Search for more papers by this authorAbstract
The Ras GTPase superfamily of proteins coordinates a diverse set of cellular outcomes, including cell morphology, vesicle transport, and cell proliferation. Primary amino acid sequence analysis has identified Specificity determinant positions (SDPs) that drive diversified functions specific to the Ras, Rho, Rab, and Arf subfamilies (Rojas et al. 2012, J Cell Biol 196:189–201). The inclusion of water molecules in structural and functional adaptation is likely to be a major response to the selection pressures that drive evolution, yet hydration patterns are not included in phylogenetic analysis. This article shows that conserved crystallographic water molecules coevolved with SDP residues in the differentiation of proteins within the Ras superfamily of small GTPases. The patterns of water conservation between protein subfamilies parallel those of sequence-based evolutionary trees. Thus, hydration patterns have the potential to help elucidate functional significance in the evolution of amino acid residues observed in phylogenetic analysis of homologous proteins. © 2019 Wiley Periodicals, Inc.
Supporting Information
Filename | Description |
---|---|
jcc26060-sup-0001-supinfo.pdfPDF document, 636.5 KB | Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Wennerberg, K. L. Rossman, C. J. Der, J. Cell Sci. 2005, 118, 843.
- 2D. D. Leipe, Y. I. Wolf, E. V. Koonin, L. Aravind, J. Mol. Biol. 2002, 317, 41.
- 3P. Prakash, A. Sayyed-Ahmad, A. A. Gorfe, PLoS Comput. Biol. 2012, 8, e1002394.
- 4G. Buhrman, G. Holzapfel, S. Fetics, C. Mattos, Proc. Natl. Acad. Sci. 2010, 107, 4931.
- 5B. M. Kearney, C. W. Johnson, D. M. Roberts, P. Swartz, C. Mattos, J. Mol. Biol. 2014, 426, 611.
- 6A. A. Gorfe, B. J. Grant, J. A. McCammon, Structure 2008, 16, 885.
- 7G. Buhrman, C. O'Connor, B. Zerbe, B. M. Kearney, R. Napoleon, E. A. Kovrigina, S. Vajda, D. Kozakov, E. L. Kovrigin, C. Mattos, J. Mol. Biol. 2011, 413, 773.
- 8F. Raimondi, G. Portella, M. Orozco, F. Fanelli, PLoS Comput. Biol. 2011, 7, e1001098.
- 9I. I. F. Saad, S. B. Saha, G. Thomas, Bioinformation 2014, 10, 293.
- 10A. M. Rojas, G. Fuentes, A. Rausell, A. Valencia, J. Cell Biol. 2012, 196, 189.
- 11L. V. Aelst, C. D'Souza-Schorey, Genes Dev. 1997, 11, 2295.
- 12P. Chavrier, B. Goud, Curr. Opin. Cell Biol. 1999, 11, 466.
- 13S. L. Schwartz, C. Cao, O. Pylypenko, A. Rak, A. Wandinger-Ness, J. Cell Sci. 2007, 120, 3905.
- 14J. G. Donaldson, A. Honda, Biochem. Soc. Trans. 2005, 33, 639.
- 15F. Melchior, Curr. Biol. 2001, 11, R257.
- 16W. D. Heo, T. Meyer, Cell 2003, 113, 315.
- 17C. Mattos, Trends Biochem. Sci. 2002, 27, 203.
- 18C. Mattos, D. Ringe, In Crystallogrphy of Biological Macromolecules; D. M. H. Eddy Arnold, M. G. Rossman, Eds., Wileyh & Sons, New Jersey, 2012.
- 19B. E. Clifton, C. J. Jackson, Cell Chem. Biol. 2016, 23, 236.
- 20I. Mihalek, I. Reš, O. Lichtarge, J. Mol. Biol. 2007, 369, 584.
- 21J. D. R. Knight, D. Hamelberg, J. A. McCammon, R. Kothary, Proteins 2009, 76, 527.
- 22T. Milano, D. Salvo, M. Luigi, S. Angelaccio, S. Pascarella, Prot. Eng. Design Select. 2015, 28, 415.
- 23J. T. Bridgham, G. N. Eick, C. Larroux, K. Deshpande, M. J. Harms, M. E. A. Gauthier, E. A. Ortlund, B. M. Degnan, J. W. Thornton, PLoS Biol. 2010, 8, e1000497.
- 24S. Guindon, O. Gascuel, Syst. Biol. 2003, 52, 696.
- 25J. P. Huelsenbeck, F. Ronquist, Bioinformatics (Oxford, England) 2001, 17, 754.
- 26C. L. Worth, S. Gong, T. L. Blundell, Nat. Rev. Mol. Cell Biol. 2009, 10, 709.
- 27S. Q. Le, O. Gascuel, Syst. Biol. 2010, 59, 277.
- 28T. Sikosek, H. S. Chan, J. Roy. Soc. Interface 2014, 11, 20140419.
- 29J. A. Capra, M. Singh, Bioinformatics 2008, 24, 1473.
- 30K. Marcus, C. Mattos, Clin. Cancer Res. 2015, 21, 1810.
- 31B. M. Kearney, M. Schwabe, K. Marcus, D. M. Roberts, M. Dechene, P. Swartz, C. Mattos, Proteins. (in press). https://doi.org/10.1002/prot.25781.
- 32J. J. Maciag, S. H. Mackenzie, M. B. Tucker, J. L. Schipper, P. Swartz, A. C. Clark, Proc. Natl. Acad. Sci. USA. 2016, 113, E6080.
- 33H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 2000, 28, 235.
- 34T. UniProt Consortium, Nucleic Acids Res. 2018, 46, 2699.
- 35A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp, G. J. Barton, Bioinformatics 2009, 25, 1189.
- 36J. Guldenhaupt, T. Rudack, P. Bachler, D. Mann, G. Triola, H. Waldmann, C. Kotting, K. Gerwert, Biophys. J. 2012, 103, 1585.
- 37S. Muratcioglu, T. S. Chavan, B. C. Freed, H. Jang, L. Khavrutskii, R. N. Freed, M. A. Dyba, K. Stefanisko, S. G. Tarasov, A. Gursoy, O. Keskin, N. I. Tarasova, V. Gaponenko, R. Nussinov, Structure 2015, 23, 1325.
- 38P. Prakash, A. Sayyed-Ahmad, K. J. Cho, D. M. Dolino, W. Chen, H. Li, B. J. Grant, J. F. Hancock, A. A. Gorfe, Sci. Rep. 2017, 7, 40109.
- 39K. D. Corbett, T. Alber, Trends Biochem. Sci. 2001, 26, 710.
- 40Z. Fang, C. B. Marshall, T. Nishikawa, A. D. Gossert, J. M. Jansen, W. Jahnke, M. Ikura, Cell Chem. Biol. 2018, 25, 1327.
- 41A. A. Gorfe, M. Hanzal-Bayer, D. Abankwa, J. F. Hancock, J. A. McCammon, J. Med. Chem. 2007, 50, 674.
- 42P. Prakash, D. Litwin, H. Liang, S. Sarkar-Banerjee, D. Dolino, Y. Zhou, J. F. Hancock, V. Jayaraman, A. A. Gorfe, Biophys. J. 2019, 116, 179.
- 43S. Kapoor, G. Triola, I. R. Vetter, M. Erlkamp, H. Waldmann, R. Winter, Proc. Natl. Acad. Sci. USA. 2012, 109, 460.
- 44C. Ambrogio, J. Kohler, Z. W. Zhou, H. Wang, R. Paranal, J. Li, M. Capelletti, C. Caffarra, S. Li, Q. Lv, S. Gondi, J. C. Hunter, J. Lu, R. Chiarle, D. Santamaria, K. D. Westover, P. A. Janne, Cell 2018, 172, 857.
- 45R. Beck, S. Prinz, P. Diestelkotter-Bachert, S. Rohling, F. Adolf, K. Hoehner, S. Welsch, P. Ronchi, B. Brugger, J. A. Briggs, F. Wieland, J. Cell Biol. 2011, 194, 765.
- 46H. Daitoku, J. Isida, K. Fujiwara, T. Nakajima, A. Fukamizu, Int. J. Mol. Med. 2001, 8, 397.
- 47B. Zhang, Y. Gao, S. Y. Moon, Y. Zhang, Y. Zheng, J. Biol. Chem. 2001, 276, 8958.
- 48C. W. Johnson, D. Reid, J. A. Parker, S. Salter, R. Knihtila, P. Kuzmic, C. Mattos, J. Biol. Chem. 2017, 292, 12981-12993.
- 49H. Li, X. Q. Yao, B. J. Grant, PLoS Comput. Biol. 2018, 14, e1006364.
- 50Q. T. Shen, X. Ren, R. Zhang, I. H. Lee, J. H. Hurley, Science 2015, 350, aac5137.
- 51Z. Sun, F. Anderl, K. Frohlich, L. Zhao, S. Hanke, B. Brugger, F. Wieland, J. Bethune, Traffic 2007, 8, 582.
- 52J. Colicelli, Sci. STKE 2004, 2004, RE13.
- 53D. Abankwa, M. Hanzal-Bayer, N. Ariotti, S. J. Plowman, A. A. Gorfe, R. G. Parton, J. A. McCammon, J. F. Hancock, EMBO J. 2008, 27, 727.
- 54O. Pylypenko, H. Hammich, I. M. Yu, A. Houdusse, Small GTPases 2018, 9, 22.
- 55F. Yi, R. Kong, J. Ren, L. Zhu, J. Lou, J. Y. Wu, W. Feng, J. Mol. Biol. 2016, 428, 3043.
- 56B. Hamel, E. Monaghan-Benson, R. J. Rojas, B. R. Temple, D. J. Marston, K. Burridge, J. Sondek, J. Biol. Chem. 2011, 286, 12141.
- 57J. M. Ortiz-Sanchez, S. E. Nichols, J. Sayyah, J. H. Brown, J. A. McCammon, B. J. Grant, Plos ONE 2012, 7, e40809.
- 58I. R. Vetter, Biol. Chem. 2016, 398, 637.