Efficacy of independence sampling in replica exchange simulations of ordered and disordered proteins
Kuo Hao Lee
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003
Search for more papers by this authorCorresponding Author
Jianhan Chen
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003
Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003
E-mail: [email protected]Search for more papers by this authorKuo Hao Lee
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003
Search for more papers by this authorCorresponding Author
Jianhan Chen
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003
Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003
E-mail: [email protected]Search for more papers by this authorAbstract
Recasting temperature replica exchange (T-RE) as a special case of Gibbs sampling has led to a simple and efficient scheme for enhanced mixing (Chodera and Shirts, J. Chem. Phys., 2011, 135, 194110). To critically examine if T-RE with independence sampling (T-REis) improves conformational sampling, we performed T-RE and T-REis simulations of ordered and disordered proteins using coarse-grained and atomistic models. The results demonstrate that T-REis effectively increase the replica mobility in temperatures space with minimal computational overhead, especially for folded proteins. However, enhanced mixing does not translate well into improved conformational sampling. The convergences of thermodynamic properties interested are similar, with slight improvements for T-REis of ordered systems. The study re-affirms the efficiency of T-RE does not appear to be limited by temperature diffusion, but by the inherent rates of spontaneous large-scale conformational re-arrangements. Due to its simplicity and efficacy of enhanced mixing, T-REis is expected to be more effective when incorporated with various Hamiltonian-RE protocols. © 2017 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
jcc24923-sup-0001-suppinfo.pdf733.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. C. Bernardi, M. C. R. Melo, K. Schulten, Biochim. Biophys. Acta 2015, 1850, 872.
- 2M. Christen, W. F. van Gunsteren, J. Comput. Chem. 2007, 29, 157.
- 3D. M. Zuckerman, Annu. Rev. Biophys. 2011, 40, 41.
- 4M. Luitz, R. Bomblies, K. Ostermeir, M. Zacharias, J. Phys. Condens. Matter 2015, 27, 323101.
- 5P. L. Freddolino, F. Liu, M. Gruebele, K. Schulten, Biophys. J. 2008, 94, L75.
- 6K. Lindorff-Larsen, S. Piana, R. O. Dror, D. E. Shaw, Science 2011, 334, 517.
- 7D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. Shan, W. Wriggers, Science 2010, 330, 341.
- 8A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 2002, 99, 12562.
- 9D. Hamelberg, J. Mongan, J. A. McCammon, J. Chem. Phys. 2004, 120, 11919.
- 10L. Wang, R. A. Friesner, B. J. Berne, J. Phys. Chem. B 2011, 115, 9431.
- 11P. Liu, B. Kim, R. A. Friesner, B. J. Berne, Proc. Natl. Acad. Sci. USA 2005, 102, 13749.
- 12E. Darve, D. Rodri'guez-Go'mez, A. Pohorille, J. Chem. Phys. 2008, 128, 144120. (
- 13E. Darve, A. Pohorille, J. Chem. Phys. 2001, 115, 9169.
- 14Y. Sugita, Y. Okamoto, Chem. Phys. Lett. 1999, 314, 141.
- 15U. H. E. Hansmann, Chem. Phys. Lett. 1997, 281, 140.
- 16Y. Okamoto, J. Mol. Graph. Model. 2004, 22, 425.
- 17W. Zhang, J. Chen, J. Chem. Theory Comput. 2013, 9, 2849.
- 18D. M. Zuckerman, E. Lyman, J. Chem. Theory Comput. 2006, 2, 1200.
- 19C. Predescu, M. Predescu, C. V. Ciobanu, J. Phys. Chem. B 2005, 109, 4189.
- 20X. Periole, A. E. Mark, J. Chem. Phys. 2007, 126, 014903.
- 21A. Okur, L. Wickstrom, M. Layten, R. Geney, K. Song, V. Hornak, C. Simmerling, J. Chem. Theory Comput. 2006, 2, 420.
- 22H. Nymeyer, J. Chem. Theory Comput. 2008, 4, 626.
- 23R. Denschlag, M. Lingenheil, P. Tavan, Chem. Phys. Lett. 2008, 458, 244.
- 24X. Cheng, G. Cui, V. Hornak, C. Simmerling, J. Phys. Chem. B 2005, 109, 8220.
- 25W. Zheng, M. Andrec, E. Gallicchio, R. M. Levy, Proc. Natl. Acad. Sci. USA 2007, 104, 15340.
- 26W. Zheng, M. Andrec, E. Gallicchio, R. M. Levy, J. Phys. Chem. B 2008, 112, 6083.
- 27M. J. Abraham, J. E. Gready, J. Chem. Theory Comput. 2008, 4, 1119.
- 28D. Sindhikara, Y. Meng, A. E. Roitberg, J. Chem. Phys. 2008, 128, 024103.
- 29D. J. Sindhikara, D. J. Emerson, A. E. Roitberg, J. Chem. Theory Comput. 2010, 6, 2804.
- 30N. Plattner, J. D. Doll, P. Dupuis, H. Wang, Y. Liu, J. E. Gubernatis, J. Chem. Phys. 2011, 135, 134111.
- 31N. Plattner, J. D. Doll, M. Meuwly, J. Chem. Theory Comput. 2013, 9, 4215.
- 32S. Jo, C. Chipot, B. Roux, J. Chem. Theory Comput. 2015, 11, 2234.
- 33S. G. Itoh, H. Okumura, J. Chem. Theory Comput. 2013, 9, 570.
- 34R. Galvelis, Y. Sugita, J. Comput. Chem. 2015, 36, 1446.
- 35R. Galvelis, S. Re, Y. Sugita, J. Chem. Theory Comput. 2017, 13, 1934.
- 36J. D. Chodera, M. R. Shirts, J. Chem. Phys. 2011, 135, 194110.
- 37B. W. Zhang, W. Dai, E. Gallicchio, P. He, J. Xia, Z. Tan, R. M. Levy, J. Phys. Chem. B 2016, 120, 8289.
- 38J. Xia, W. F. Flynn, E. Gallicchio, B. W. Zhang, P. He, Z. Tan, R. M. Levy, J. Comput. Chem. 2015, 36, 1772.
- 39E. Gallicchio, J. Xia, W. F. Flynn, B. Zhang, S. Samlalsingh, A. Mentes, R. M. Levy, Comput. Phys. Commun. 2015, 196, 236.
- 40B. R. Brooks, C. L. Brooks, III, A. D. Mackerell, Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem. 2009, 30, 1545.
- 41M. Feig, J. Karanicolas, C. L. Brooks, III, J. Mol. Graph. Model. 2004, 22, 377.
- 42 R Core Team, R: A language and environment for statistical computing; R Foundation for Statistical Computing: Vienna, Austria, 2008. Available at: http://www.R-project.org/.
- 43J. Karanicolas, C. L. Brooks, III, Protein Sci. 2002, 11, 2351.
- 44S. Miyazawa, R. L. Jernigan, J. Mol. Biol. 1996, 256, 623.
- 45J. Kuszewski, A. M. Gronenborn, G. M. Clore, J. Am. Chem. Soc. 1999, 121, 2337.
- 46R. M. Fesinmeyer, F. M. Hudson, N. H. Andersen, J. Am. Chem. Soc. 2004, 126, 7238.
- 47W. Shalongo, L. Dugad, E. Stellwagen, J. Am. Chem. Soc. 1994, 116, 8288.
- 48R. B. Best, J. Mittal, M. Feig, A. D. Mackerell, Jr., Biophys. J. 2012, 103, 1045.
- 49J. Huang, A. D. Mackerell, Jr., Biophys. J. 2014, 107, 991.
- 50W. Im, M. S. Lee, C. L. Brooks, III, J. Comput. Chem. 2003, 24, 1691.
- 51J.-P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, J. Comput.Phys. 1977, 23, 327.
- 52W. Zhang, J. Chen, J. Chem. Theory Comput. 2014, 10, 918.
- 53K. H. Lee, J. Chen, J. Comput. Chem. 2016, 37, 550.
- 54D. Ganguly, J. Chen, J. Am. Chem. Soc. 2009, 131, 5214.
- 55I. Radhakrishnan, G. C. Pérez-Alvarado, D. Parker, H. J. Dyson, M. R. Montminy, P. E. Wright, Cell 1997, 91, 741.
- 56I. Radhakrishnan, G. C. Pérez-Alvarado, H. J. Dyson, P. E. Wright, FEBS Lett. 1998, 430, 317.
- 57S. Wallin, H. S. Chan, J. Phys. Condens. Matter 2006, 18, S307.
- 58V. N. Uversky, C. J. Oldfield, A. K. Dunker, J. Mol. Recognit. 2005, 18, 343.
- 59H. J. Dyson, P. E. Wright, Nat. Rev. Mol. Cell Biol. 2005, 6, 197.
- 60R. G. Smock, L. M. Gierasch, Science 2009, 324, 198.
- 61V. J. Hilser, E. B. Thompson, Proc. Natl. Acad. Sci. USA 2007, 104, 8311.
- 62C. J. Tsai, B. Ma, Y. Y. Sham, S. Kumar, R. Nussinov, Proteins 2001, 44, 418.