Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods
Corresponding Author
S. Koutsopoulos
Department of Chemistry, University of Patras, GR-26500 Patras, Greece
Department of Chemistry, University of Patras, GR-26500 Patras, GreeceSearch for more papers by this authorCorresponding Author
S. Koutsopoulos
Department of Chemistry, University of Patras, GR-26500 Patras, Greece
Department of Chemistry, University of Patras, GR-26500 Patras, GreeceSearch for more papers by this authorAbstract
For the synthesis of hydroxyapatite crystals from aqueous solutions three preparation methods were employed. From the experimental processes and the characterization of the crystals it was concluded that aging and precipitation kinetics are critical for the purity of the product and its crystallographic characteristics. The authentication details are presented along with the results from infrared spectroscopy, X-ray powder diffraction, Raman spectroscopy, transmission and scanning electron photographs, and chemical analysis. Analytical data for several calcium phosphates were collected from the literature, extensively reviewed, and the results were grouped and presented in tables to provide comparison with the data obtained here. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res 62: 600–612, 2002
References
- 1Berzelius J. Ueber basische phosphorsaure kalkerde. Ann Chem Pharmac 1845; 53: 286–288.
10.1002/jlac.18450530212 Google Scholar
- 2Hausen H. Die Apatite, deren chemische Zusammensetzung und ihr Verhaltnis zu den physikalischen und morphologischen Eigenschaften. Acta Acad Abo Ser B. Mat Phys Mat Natur Teknik 1929; 5: 62–65.
- 3Joris SJ, Amberg CH. Nature of deficiency in nonstoichiometric hydroxyapatites. I. Catalytic activity of calcium and strontium hydroxyapatites. J Phys Chem 1971; 75: 3167–3171.
- 4Kibby CL, Hall WK. Surface properties of calcium phosphates. In: ML Hair, editor. The chemistry of biosurfaces Vol. 2. New York: Dekker; 1972. p 663–729.
- 5Uchida A, Shinto Y, Araki N, Ono K. Slow release of anticancer drugs from porous calcium hydroxyapatite ceramic. J Orthop Res 1992; 10: 440–445.
- 6Kawasaki T. Hydroxyapatite as a liquid chromatographic packing. J Chromatography 1991; 544: 147–184.
- 7Christoffersen J, Christoffersen MR, Larsen R, Møller IJ. Regeneration by surface-coating of bone char used for defluoridation of water. Water Res 1991; 25: 227–229.
- 8Walsh WR, Guzelsu N. Compressive properties of cortical bone: mineral-organic interfacial bonding. Biomaterials 1994; 15: 137–145.
- 9Khan SR. Association between calcium phosphate and calcium oxalate crystals in the development of urinary stones. In: Z Amjad, editor. Mineral scale formation and inhibition. New York: Plenum Press; 1995. p 261–270.
10.1007/978-1-4899-1400-2_21 Google Scholar
- 10Nancollas GH. The mechanism of biological mineralization. J Crystal Growth 1977; 42: 185–193.
- 11Cohen BI, Setoguchi T, Mosbach EH, McSharry CK, Strenger RJ, Kuroki S, Soloway RD. An animal model of pigment cholelithiasis. Amer J Surg 1987; 153: 130–138.
- 12Schmid K, McSharry WO, Pameijer CH, Binette JP. Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Atherosclerosis 1980; 37: 199–210.
- 13Koutsopoulos S, Kontogeorgou A, Petroheilos J, Dalas E. Calcification of porcine and human cardiac valves: testing of various inhibitors for antimineralization. J Mater Sci Mater Med 1998; 9: 421–424.
- 14Nancollas GH. Enamel apatite nucleation and crystal growth. J Dent Res 1979; 58B: 861–870.
- 15Dalas E, Koutsoukos PG. Crystallization of hydroxyapatite from aqueous solutions in the presence of cadmium. J Chem Soc Farad Trans 1989; 85: 3159–3164.
- 16Koutsopoulos S, Demakopoulos I, Argiriou X, Dalas E, Klouras N, Spanos N. Inhibition of hydroxyapatite formation by zirconocenes. Langmuir 1995; 11: 1831–1834.
- 17Boskey AL, Bullough PG. Cartilage calcification: normal and aberrant. Scanning Electron Microsc 1984; II: 943–952.
- 18Drucker DA, Capello WN, D'Antonio JA, Hile LA. Works in progress #6. Total hip arthroplasty using a hydroxyapatite-coated acetabular and femoral component. Orthop Rev 1991; 20: 179–185.
- 19Deeb ME, Hosny M, Sharawy M. Osteogenesis in composite grafts of allogenic demineralized bone powder and porous hydroxyapatite. J Oral Maxillofac Surg 1989; 47: 50–56.
- 20Jahn AF. Experimental applications of porous (coralline) hydroxyapatite in middle ear and mastoid reconstruction. Laryngoscope 1992; 102: 289–299.
- 21Paschalis EP, Zhao Q, Tucker BE, Mukhopahayay S, Bearcroft JA, Beals NB, Spector M, Nancollas GH. Degradation potential of plasma-sprayed hydroxyapatite-coated titanium implants. J Biomed Mat Res 1995; 29: 1499–1505.
- 22Fowler BO. Infrared studies of apatites. II. Preparation of normal and isotopically substituted calcium, strontium, and barium hydroxyapatites and spectra-structure-composition correlations. Inorg Chem 1974; 13: 207–214.
- 23Yamasaki N, Kai T, Nishioka M, Yanagisawa K, Ioku K. Porous hydroxyapatite ceramics prepared by hydrothermal hot-pressing. J Mater Sci 1990; 9: 1150–1151.
- 24Nishioka M, Yanagisawa K, Yamasaki N. Solidification of glass powder by a hydrothermal hot-pressing technique. Yogyo Kyokaishi 1986; 94: 1119–1124.
- 25LeGeros RZ, Daculsi G, Orly I, Abergas T, Torres W. Solution-mediated transformation of octacalcium phosphate (OCP) to apatite. Scann Microsc 1989; 3: 129–138.
- 26Cheng PT. Formation of octacalcium phosphate and subsequent transformation to hydroxyapatite at low supersaturation: a model for cartilage calcification. Calcif Tissue Int 1987; 40: 339–343.
- 27Brown WE. Crystal growth of bone mineral. Clin Orthop 1966; 44: 205–220.
- 28Tanahashi M, Kamiya K, Suzuki T, Nasu H. Fibrous hydroxyapatite grown in the gel system: effects of pH of the solution on the growth rate and morphology. J Mater Sci Mater Med 1992; 3: 48–53.
- 29Lasić S, Katnić-Popović J, Zec S, Miljević N. Properties of hydroxyapatite crystallized from high temperature alkaline solutions. J Crystal Growth 1996; 165: 124–128.
- 30Kandori K, Saito M, Takabe T, Yasukawa A, Ishikawa T. Adsorption of bovine serum albumin on synthetic carbonate calcium hydroxyapatite. J Coll Int Sci 1995; 174: 124–129.
- 31Heughebaert JC, Zawacki SJ, Nancollas GH. The growth of nonstoichiometric apatite from aqueous solution at 37°C. I. Methodology and growth at pH 7.4. J Coll Inter Sci 1990; 135: 20–32.
- 32Zawacki SJ, Heughebaert JC, Nancollas GH. The growth of nonstoichiometric apatite from aqueous solution at 37°C. II. Effects of pH upon the precipitated phase. J Coll Inter Sci 1990; 135: 33–44.
- 33Hlady V, Füredi-Milhofer H. Adsorption of human serum albumin on precipitated hydroxyapatite. J Coll Int Sci 1979; 69: 460–468.
- 34Nelson DGA, Barry JC, Shields CP, Glena R, Featherstone JDB. Crystal morphology, composition, and dissolution behavior of carbonated apatites prepared at controlled pH and temperature. J Coll Int Sci 1989; 130: 467–479.
- 35Nancollas GH. Phase transformation during precipitation of calcium salts. In: GH Nancollas, editor. Biological Mineralization and Demineralization. Heidelberg: Springer-Verlag; 1982. p 79–99.
10.1007/978-3-642-68574-3_5 Google Scholar
- 36Brown WE, Chow LC, Siew C, Gruninger S. Acidic calcium phosphate precursors in formation of enamel mineral. In: FW Fearnhead, S Suga, editors. Tooth Enamel Proc. Int. Symp. Compos., Prop. Fundam. Struct. Tooth Enamel, 4th. Amsterdam: Elsevier; 1984. p 8–13.
- 37Tomson MB, Barone JP, Nancollas GH. Precise calcium phosphate determination. At Abs Newslett 1977; 16: 177–178.
- 38Koutsopoulos S. Kinetic crystal growth of hydroxyapatite in biological conditions. [PhD Thesis]. University of Patras; 1997.
- 39Nancollas GH, Mohan MS. Growth of hydroxyapatite crystals. Arch Oral Biol 1970; 15: 731–745.
- 40Moreno EC, Gregory TM, Brown WE. Preparation and solubility of hydroxyapatite. J Res Natl Bur Stands A 1968; 72: 773–782.
- 41Koutsoukos PG, Nancollas GH. The morphology of hydroxyapatite crystals grown in aqueous solution at 37°C. J Crystal Growth 1981; 55: 369–375.
- 42Hohl H, Koutsoukos PG, Nancollas GH. The crystallization of hydroxyapatite and dicalcium phosphate dihydrate; representation of growth curves. J Crystal Growth 1982; 57: 325–335.
- 43Nordström EG, Karlsson KH. Carbonate-doped hydroxyapatite. J Mater Sci Mater Med 1990; 1: 182–184.
- 44Pauling L. The nature of the chemical bond. Ithaca, NY: Cornell University Press; 1960.
- 45Neuman WF, Toribara TY, Moulryan BJ. Synthetic hydroxyapatite crystals. I. Sodium and potassium fixation. Arch Biochem Biophys 1962; 96: 381–390.
- 46Arends J, Christoffersen J, Christoffersen MR, Eckert H, Fowler BO, Heughebaert JC, Nancollas GH, Yesinowski JP, Zawacki SJ. A calcium hydroxyapatite precipitated from an aqueous solution; an international multimethod analysis. J Crystal Growth 1987; 84: 512–532.
- 47Elliott JC, Holcomb DW, Young RA. Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel. Calcif Tissue Int 1985; 37: 372–375.
- 48Nelson DGA, Featherstone JDB. Preparation, analysis, and characterization of carbonated apatites. Calcif Tissue Int 1982; 34(Suppl. 2): 69–81.
- 49Meyer JL, Fowler BO. Lattice defects in nonstoichiometric calcium hydroxylapatites. A chemical approach. Inorg Chem 1982; 21: 3029–3035.
- 50Deptula A, Łada W, Olczak T, Borello A, Alvani C, di Bartolomeo A. Preparation of spherical powders of hydroxyapatite by sol-gel process. J Non-Cryst Solids 1992; 147–148: 537–541.
- 51Berry EE, Baddiel CB. Some assignments in the infrared spectrum of octacalcium phosphate. Spectrochim Acta A 1967; 23: 1781–1792.
- 52Chapman AC, Long DA, Jones DL. Spectra of phosphorous compounds. II. The force constants of orthophosphates. Spectrochim Acta A 1965; 21: 633–640.
- 53Bett JAS, Christner LG, Keith Hall W. Hydrogen held by solids. XII. Hydroxyapatite catalysts. J Amer Chem Soc 1967; 89: 5535–5541.
- 54Stutmann JJ, Termine JD, Posner AS. Vibrational spectra and structure of the phosphate ion in some calcium phosphates. Trans NY Acad Sci 1965; 27: 669–675.
- 55Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem 1974; 13: 194–207.
- 56Gadaleta SJ, Paschalis EP, Camacho NP, Betts F, Mendelhson R, Boskey AL. Fourier Transform Infrared Spectroscopy of Synthetic and Biological Apatites. In: Z Amjad, editor. Mineral scale formation and inhibition. New York: Plenum Press; 1995. p 283–294.
- 57Klee WE, Engel G. Infrared spectra of the phosphate ions in various apatites. J Inorg Nucl Chem 1970; 32: 1837–1843.
- 58Baddiel CB, Berry EE. Spectra-structure correlations in hydroxyapatite and fluorapatite. Spectrochim Acta A 1966; 22: 1407–1416.
- 59LeGeros RZ. Unit cell dimensions of human enamel apatite. Effect of chloride incorporation. Arch Oral Biol 1975; 20: 63–71.
- 60Brown WE, Schroeder LW, Ferris JS. Interlayering of crystalline octacalcium phosphate and hydroxyapatite. J Phys Chem 1979; 83: 1385–1388.
- 61Kay MI, Young RA, Posner AS. Crystal structure of hydroxyapatite. Nature 1964; 204: 1050–1052.
- 62Montel G. Physical chemistry of phosphate with the apatite structure. Bull Soc Chim France 1968: 1693–1700.
- 63Corbridge DEC. Studies in inorganic chemistry, Vol. 6: Phosphorus. An outline of its chemistry, biochemistry and technology ( 3rd ed.). Amsterdam: Elsevier; 1985.
- 64 A.S.T.M. card files No. 9-432 (HAP), No. 9-80 (DCPA), No. 9-348, and 9-169 (α and β-TCP), No. 9-77 (DCPD), No. 19-272 (CAP, carbonated apatite), No. 26-1056 (OCP).
- 65Koutsoukos PG. Kinetics of precipitation of hydroxyapatite from aqueous solutions. [PhD Thesis]. State University of New York at Buffalo; 1980.
- 66Ebrahimpour A, Johnsson M, Richardson CF, Nancollas GH. The characterization of hydroxyapatite preparations. J Coll Interf Sci 1993; 159: 158–163.
- 67Freche M. Contribution a l'etude des phosphates de calcium: Croissance sur le phosphate dicalcique anydre. Croissance de depots elabores par pulverisation chimique. [PhD Thesis]. Institute Nationale Polytechnique de Toulouse; 1989.
- 68Prener JS. The growth and crystallographic properties of calcium fluor- and chlorapatite crystals. J Electrochem Soc 1967; 114: 77–83.
- 69Tomson MB, Nancollas GH. Mineralization kinetics: a constant composition approach. Science 1978; 200: 1059–1060.
- 70Koutsoukos PG, Amjad Z, Tomsom MB, Nancollas GH. Crystallization of calcium phosphates. A constant composition study. J Am Chem Soc 1980; 102: 1553–1557.
- 71Barone JP. A kinetic study of the formation of calcium phosphate minerals. [PhD Thesis]. State University of New York at Buffalo; 1976.
- 72Freund F, Knobel RM. Distribution of fluorine in hydroxyapatite studied by infrared spectroscopy. J Chem Soc, Dalton Trans 1977; 11: 1136–1140.
- 73Wienand L, Dallemagne MJ, Duyckaerts G. Hydrogen bonding in apatitic calcium phosphates. Nature 1961; 190: 164–165.
- 74Joris SJ, Amberg CH. Nature of deficiency in nonstoichiometric hydroxyapatites. II. Spectroscopic studies of calcium and strontium hydroxyapatites. J Phys Chem 1971; 75: 3172–3178.
- 75Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier-transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the ν3 PO4 domain. Calcif Tissue Int 1991; 49: 383–388.
- 76Chickerur NS, Tung MS, Brown WE. A mechanism for incorporation of carbonate into apatite. Calcif Tissue Int 1980; 32: 55–62.
- 77Fowler BO, Moreno EC, Brown WE. Ir spectra of hydroxyapatite, octacalcium phosphate, and pyrolyzed octacalcium phosphate. Arch Oral Biol 1966; 11: 477–492.
- 78Lang-Dupont M. Calcium diorthophosphate. Bull Soc Chim France 1959; 11–12: 1897–1908.
- 79Chapman AC, Thrilwell LE. Spectra of phosphorus compounds. I. The infrared spectra of orthophosphates. Spectrochim Acta 1964; 20: 937–947.
- 80Sauer GR, Zunic WB, Durig JR, Wuthier RE. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates. Calcif Tissue Int 1994; 54: 414–420.
- 81Tsuda H, Arends J. Raman spectra of human dental calculus. J Dent Res 1993; 72: 1609–1613.
- 82Fowler BO, Marković M, Brown WE. Octacalcium phosphate carboxylates. 3. Infrared and Raman vibrational spectra. Chem Mater 1993; 5: 1417–1423.
- 83Nelson DGA, Williamson BE. Raman spectra of phosphate and monofluorophosphate ions in several dentally-relevant material. Caries Res 1985; 19: 113–121.
- 84O'Shea DC, Bartlett ML, Young RA. Compositional analysis of apatites with laser-Raman spectroscopy: (OH, F, Cl) apatites. Arch Oral Biol 1974; 19: 995–1006.
- 85Marković M, Fowler BO, Brown WE. Octacalcium phosphate carboxylates. 2. Characterization and structural considerations. Chem Mater 1993; 5: 1406–1416.
- 86Nelson DGA, Williamson BE. Low-temperature laser Raman spectroscopy of synthetic carbonated apatites and dental enamel. Aust J Chem 1982; 35: 715–727.
- 87Griffith WP. Raman studies on rock-forming minerals. Part II. Minerals containing MO3, MO4, and MO6 groups. J Chem Soc (A) 1970: 286–291.
- 88Mihailova B, Kolev B, Balarew C, Dyulgerova E, Konstantinov L. Vibration spectroscopy study of hydrolyzed precursors for sintering calcium phosphate bio-ceramics. J Mater Sci 2001; 36: 4291–4297.
- 89Penel G, Leroy N, van Landuyt P, Flautre B, Hardouin P, Lemaître J, Leroy G. Raman microspectrometry studies of brushite cement: In vivo evolution in a sheep model. Bone 1999; 25(Suppl.): 81S–84S.
- 90de Aza PN, Guitian F, Santos C, de Aza S, Cusco R, Artus L. Vibrational investigation of calcium phosphate compounds. 2. Comparison between hydroxyapatite and β-tricalcium phosphate. Chem Mater 1997; 9: 916–922.