Simulating low flows over a heterogeneous landscape in southeastern Poland
Corresponding Author
Krzysztof Raczyński
Department of Hydrology and Climatology, Maria Curie-Sklodowska University, Lublin, Poland
Correspondence
Krzysztof Raczyński, Department of Hydrology and Climatology, Maria Curie-Sklodowska University, Krasnicka 2d, 20-718 Lublin, Poland.
Email: [email protected]
Search for more papers by this authorJamie Dyer
Department of Geosciences, Mississippi State University, Mississippi State, Mississippi, USA
Search for more papers by this authorCorresponding Author
Krzysztof Raczyński
Department of Hydrology and Climatology, Maria Curie-Sklodowska University, Lublin, Poland
Correspondence
Krzysztof Raczyński, Department of Hydrology and Climatology, Maria Curie-Sklodowska University, Krasnicka 2d, 20-718 Lublin, Poland.
Email: [email protected]
Search for more papers by this authorJamie Dyer
Department of Geosciences, Mississippi State University, Mississippi State, Mississippi, USA
Search for more papers by this authorAbstract
This paper presents a scheme describing low flow formation processes in areas with different environmental conditions, including the impact of the selection and explanatory power of predictors for a probabilistic model based on the Logit model. The research was carried out using 29 daily streamflow gauges located in the Lublin region of southeastern Poland for the hydrological period 1976–2018. Analysis resulted in two distinct low flow schemes. In the lowland rivers, low flows occur during the warm season and are related to evaporation exceeding precipitation. In the upland rivers, hydrogeological factors related to water levels in the local Cretaceous aquifers determine the occurrence of low flows. This differentiation affects the quality of the predictive models. For lowland rivers, models based on the climatic water balance with a monthly shift have a better fit, while these models used for upland rivers are characterized by an approximately 10% decrease in accuracy. For upland rivers, the combined CtHt models without shifts produce the best model fit. The generalized precision of the Logit models is around 80%–90%.
Open Research
DATA AVAILABILITY STATEMENT
The raw data of daily flow series for all gauging sections used in this study can be accessed by IMGW webAPI, and used for scientific purposes only, as indicated in regulations of the IMGW institution. Data can be accessed online at: https://dane.imgw.pl/datastore.
Supporting Information
Filename | Description |
---|---|
hyp14322-sup-0001-SupInfo.docxWord 2007 document , 5.1 MB | Data S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Ahn, K. H., Palmer, R., & Steinschneider, S. (2017). A hierarchical Bayesian model for regionalized seasonal forecasts: Application to low flows in the northeastern United States. Water Resources Research, 53(1), 503–521. https://doi.org/10.1002/2016WR019605
- Augustin, N. H., Beevers, L., & Sloan, W. T. (2008). Predicting river flows for future climates using an autoregressive multinomial logit model. Water Resources Research, 44, W07403. https://doi.org/10.1029/2006WR005127
- Bormann, H., & Pinter, N. (2017). Trends in low flows of German rivers since 1950: Comparability of different low-flow indicators and their spatial patterns. River Research and Applications, 33(7), 1191–1204.
- Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis forecasting and control ( 5th ed.). Wiley.
- Cervi, F., Blöschl, G., Corsini, A., Borgatti, L., & Montanari, A. (2017). Perennial springs provide information to predict low flows in mountain basins. Hydrological Sciences Journal, 62(15), 2469–2481.
- Chabudziński, Ł., Chmiel, S., & Michalczyk, Z. (2015). Metal content in the waters of the upper Sanna River catchment (SE Poland): Condition associated with drilling of a shale gas exploration wellbore. Environmental Earth Sciences, 74(9), 6681–6691.
- Coch, A., & Mediero, L. (2016). Trends in low flows in Spain in the period 1949–2009. Hydrological Sciences Journal, 61(3), 568–584.
- Cook, B. I., Ault, T. R., & Smerdon, J. E. (2015). Unprecented 21st century drought risk in the American southwest and Central Plains. Science Advances, 1(1), e1400082. https://doi.org/10.1126/sciadv.1400082
- Cook, B. I., Smerdon, O. W., Seager, R., & Coats, S. (2014). Global warming and 21st century drying. Climate Dynamics, 43(9–10), 2607–2627.
- Di Baldassarre, G., AghaKouchak, A., Rangecroft, S., Wanders, N., Kuil, L., Veldkamp, T., & Van Loon, A. F. (2017). Drought and reservoirs: Intended benefits and unintended consequences. EGU General Assembly Conference Abstracts, 19, 12832.
- Dierauer, J. R., Whitfield, P. H., & Allen, D. M. (2018). Climate controls on runoff and low flows in mountain catchments of Western North America. Water Resources Research, 54(10), 7495–7510.
- Feyen, L., & Dankers, R. (2009). Impact of global warming on streamflow drought in Europe. Journal of Geophysical Research, 114, D17116. https://doi.org/10.1029/2008JD011438
- Fleig, A., Tallaksen, L., Hisdal, H., & Demuth, S. (2006). A global evaluation of streamflow drought characteristics. Hydrology and Earth System Sciences, 10, 535–552.
- Forzieri, G., Feyen, L., Rojas, R., Florke, M., Wimmer, F., & Bianchi, A. (2014). Ensemble projections of future streamflow droughts in Europe. Hydrology and Earth System Sciences, 18, 85–108.
- Giuntoli, I., Vidal, J. P., Prudhomme, C., & Hannah, D. M. (2015). Future hydrological extremes: The uncertainty from multiple global climate and global hydrological models. Earth System Dynamics, 6, 267–285.
- Guzha, A. C., Rufino, M. C., Okoth, S., Jacobs, S., & Nóbrega, R. L. B. (2018). Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. Journal of Hydrology: Regional Studies, 15, 49–67. https://doi.org/10.1016/j.ejrh.2017.11.005
- Haslinger, K., Koffler, D., Schöner, W., & Laaha, G. (2014). Exploring the link between meteorological drought and streamflow: Effects of climate-catchment interaction. Water Resources Research, 50(3), 2468–2487.
- Jenicek, M., Seibert, J., Zappa, M., Staudinger, M., & Jonas, T. (2016). Importance of maximum snow accumulation for summer low flows in humid catchments. Hydrology and Earth System Sciences, 20, 859–874. https://doi.org/10.5194/hess-20-859-2016
- Konapala, G., Veettil, A. V., & Mishra, A. K. (2017). Teleconnection between low flows and large-scale climate indices in Texas River basins. Stochastic Environmental Research and Risk Assessment, 32, 2337–2350.
- Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G. R., Kron, W., Benito, G., Honda, Y., Takahashi, K., & Sherstyukov, B. (2014). Flood risk and climate change: Global and regional perspectives. Hydrological Sciences Journal, 59(1), 1–28.
- Kundzewicz, Z. W., Krysanova, V., Dankers, R., Hirabayashi, Y., Kanae, S., Hattermann, F. F., Huang, S., Milly, P. C. D., Stoffel, M., Driessen, P. P. J., Matczak, P., Quevauviller, P., & Schellnhuber, H.-J. (2017). Differences in flood hazard projections in Europe–their causes and consequences for decision making. Hydrological Sciences Journal, 62(1), 1–14.
- Laaha, G., Gauster, T., Tallaksen, L., Vidal, J. P., Stahl, K., Prudhomme, C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen, H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J., Kingston, D., Van Loon, A. F., Mediero, L., … Wong, W. K. (2017). The European 2015 drought from a hydrological perspective. Hydrology and Earth System Sciences, 21(6), 3001–3024. https://doi.org/10.5194/hess-21-3001-2017
- Li, Q., Wei, X., Yang, X., Giles-Hansen, K., Zhang, M., & Liu, W. (2018). Topography significantly influencing low flows in snow-dominated watersheds. Hydrology and Earth System Sciences, 22(3), 1947–1956.
- Marengo, J. A., Torres, R. R., & Alves, L. M. (2017). Drought in Northeast Brazil – Past, present, and future. Theoretical and Applied Climatology, 129, 1189–1200. https://doi.org/10.1007/s00704-016-1840-8
- Markham, C. G. (1970). Seasonality of precipitation in the United States. Annals of the Association of American Geographers, 60(3), 593–597.
- Marx, A., Kumar, R., Thober, S., Rakovec, O., Wanders, N., Zink, M., Wood, E. F., Pan, M., Sheffield, J., & Samaniego, L. (2018). Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 °C. Hydrology and Earth System Sciences, 22, 1017–1032. https://doi.org/10.5194/hess-22-1017-2018
- Mcmahon, T. A., & Finlayson, B. L. (2003). Droughts and anti-droughts: The low flow hydrology of Australian rivers. Freshwater Biology, 48, 1147–1160.
- Michalczyk, Z. (1986). Warunki występowania i krążenia wód na obszarze Wyżyny Lubelskiej i Roztocza. Lublin: Wyd. UMCS.
- Michalczyk, Z., Chmiel, S., Chmielewski, J., & Turczyński, M. (2007). Hydrologiczne konsekwencje eksploatacji złoża węgla kamiennego w rejonie Bogdanki (LZW) (Hydrological consequences of hard coal mining in the area of Bogdanka [LCB]). Biuletyn Państwowego Instytutu Geologicznego, 422, 113–125.
- Michalczyk, Z., & Wilgat, T. (2008). Wody, Środowisko przyrodnicze Lubelszczyzny. Lublin: LTN.
- Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391, 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012
- Modarres, R. (2007). Streamflow drought time series forecasting. Stochastic Environmental Research and Risk Assessment, 21, 223–233. https://doi.org/10.1007/s00477-006-0058-1
- Papadimitriou, L. V., Koutroulis, A. G., Grillakis, M. G., & Tsanis, I. K. (2016). High-end climate change impact on European runoff and low flows – Exploring the effects of forcing biases. Hydrology and Earth System Sciences, 20, 1785–1808. https://doi.org/10.5194/hess-20-1785-2016
- Peters, E. (2003). Propagation of drought through groundwater systems. Wageningen University.
- Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W., Dankers, R., Fekete, B. M., Franssen, W., Gerten, D., Gosling, S. N., Hagemann, S., Hannah, D. M., Kim, H., Masaki, Y., Satoh, Y., Stacke, T., Wada, Y., & Wisser, D. (2014). Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. PNAS, 111(9), 3262–3267.
- Raczyński, K. (2015). Przepływy graniczne niżówek w rzekach Lubelszczyzny. Annales Universitatis Mariae Curie-Sklodowska, sectio B – Geographia, Geologia, Mineralogia et Petrographia, 70(1), 117–129.
10.17951/b.2015.70.1.117 Google Scholar
- Raczyński, K., & Dyer, J. (2020). Multi-annual and seasonal variability of low-flow river conditions in southeastern Poland. Hydrological Sciences Journal, 65(15), 2561–2576. https://doi.org/10.1080/02626667.2020.1826491
- Radzka, E. (2014). Climatic water balance for the vegetation season (according to Iwanow's equation) in Central-Eastern Poland [original titile: Klimatyczny bilans wodny okresu wegetacyjnego (według wzoru Iwanowa) w środkowowschodniej Polsce]. Woda-Środowisko-Obszary Wiejskie, 14(1), 67–76.
- Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., & Ludwig, F. (2016). Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Climatic Change, 135, 341–355.
- Sadri, S., Kam, J., & Sheffield, J. (2016). Nonstationarity of low flows and their timing in the eastern United States. Hydrology and Earth System Sciences, 20, 633–649. https://doi.org/10.5194/hess-20-633-2016
- Schneider, C., Laizé, C. L. R., Acreman, M. C., & Flörke, M. (2013). How will climate change modify river flow regimes in Europe? Hydrology and Earth System Sciences, 17(1), 325–339.
- Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2008). A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR.
- Smakhtin, V. U. (2001). Low flow hydrology: A review. Journal of Hydrology, 240(3–4), 147–186. https://doi.org/10.1016/S0022-1694(00)00340-1
- Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., & Vogt, J. (2014). World drought frequency, duration, and severity for 1951-2010. International Journal of Climatology, 34, 2792–2804. https://doi.org/10.1002/joc.3875
- Sposób, J. (2007). Cykle socjohydrologiczne aglomeracji lubelskiej i ich oddziaływanie na przepływ Bystrzycy (Sociohydrological cycles of the Lublin agglometarion and their influence on the Bystrzyca river discharges). Obieg wody w środowisku naturalnym i przekształconym, 487–494.
- Stahl, K., & Demuth, S. (1999). Linking streamflow drought to the occurrence of atmospheric circulation patterns. Hydrological Sciences Journal, 44(3), 467–482. https://doi.org/10.1080/02626669909492240
- Stoelzle, M., Stahl, K., Morhard, A., & Weiler, M. (2014). Streamflow sensitivity to drought scenarios in catchments with different geology. Geophysical Research Letters, 41(17), 6174–6183.
- Tallaksen, L., Madsen, H., & Clausen, B. (1997). On the definition and modelling of streamflow drought duration and deficit volume. Hydrological Sciences Journal, 42(1), 15–33.
- Tomaszewski, E. (2014). Seasonality level of hydrological drought in rivers and its variability. In P. Gâştescu, W. Marszelewski, & P. Bretcan (Eds.), Water resources and wetlands. Conference proceedings. Romanian Limnogeographical Association.
- Tomaszewski, E. (2018). Low-flow discharge deficits assessment, applying constant and variable low-flow threshold levels, as illustrated with the example of selected catchments in the Vistula River basin. Acta Scientiarum Polonorum-Formatio Circumiectus, 18(3), 205–216.
- Touma, D., Ashfaq, M., Nayak, M. A., Kao, S. C., & Diffenbaugh, N. S. (2014). A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology, 526, 196–207. https://doi.org/10.1016/j/jhydrol.2014.12.011
- Van Loon, A. F. (2015). Hydrological drought explained. WIREs Water, 2, 359–392. https://doi.org/10.1002/wat2.1085
- Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I., Stahl, K., Hannaford, J., Di Baldassarre, G., Teuling, A. J., Tallaksen, L. M., Uijlenhoet, R., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., Rangecroft, S., Wanders, N., & Van Lanen, H. A. J. (2016). Drought in the anthropocene. Nature Geoscience, 9, 89–91.
- Van Loon, A. F., & Laaha, G. (2015). Hydrological drought severity explained by climate and catchment characteristics. Journal of Hydrology, 526, 3–14.
- Van Loon, A. F., Rangecroft, S., Coxon, G., Breña Naranjo, J. A., Van Ogtrop, F., & Van Lanen, H. A. J. (2019). Using paired catchments to quantify the human influence on hydrological droughts. Hydrology and Earth System Sciences, 23, 1725–1739. https://doi.org/10.5194/hess-23-1725-2019
- Van Loon, A. F., & Van Lanen, H. A. J. (2012). A process-based typology of hydrological drought. Hydrology and Earth System Sciences, 16, 1915–1946. https://doi.org/10.5194/hess-16-1915-2012
- Van Loon, A. F., van Lanen, H. A. J., Hisdal, H., Tallaksen, L. M., Fendekova, M., Oosterwijk, J., Horvát, O., & Machlica, A. (2010). Understanding hydrological winter drought in Europe. Global Change: Facing Risks and Threats to Water Resources, 340, 189–196.
- Vicente-Serrano, S. M., Lopez-Moreno, J., Begueria, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., Garcia-Ruiz, J. M., Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F., & Espejo, F. (2014). Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9, 1–9. https://doi.org/10.1088/1748-9326/9/4/044001
- Wanders, N., & Wada, Y. (2015). Human and climate impacts on the 21st century hydrological drought. Journal of Hydrology, 526, 208–220. https://doi.org/10.1016/j.jhydrol.2014.10.047
- Wang, X., Chen, R., Liu, G., Han, C., Yang, Y., Song, Y., Liu, J., Liu, Z., Liu, X., Guo, S., Wang, L., & Zheng, Q. (2019). Response of low flows under climate warming in high-altitude permafrost regions in western China. Hydrological Processes, 33(1), 66–75.
- Wang, Z., Zhong, R., Lai, C., Zeng, Z., Lian, Y., & Bai, X. (2018). Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. Agricultural and Forest Meteorology, 249, 149–162. https://doi.org/10.1016/j.agrformet.2017.12.077
- Wilhite, D. A., & Glantz, M. H. (1985). Understanding the drought phenomenon: The role of definitions. Water International, 10, 111–120. https://doi.org/10.1080/02508068508686328
10.1080/02508068508686328 Google Scholar
- Yahiaoui, A., Touaibia, B., & Bouvier, C. (2009). Frequency analysis of the hydrological drought regime case of oued Mina catchment in western of Algeria. Revue Nature et Technologie, 1, 3–15.
- Zaidman, M. D., Rees, H. G., & Young, A. R. (2001). Spatio-temporal development of streamflow droughts in north-West Europe. Hydrology and Earth System Sciences, 5(4), 733–751.
- Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19, 333–349.