A physically constrained wavelet-aided statistical model for multi-decadal groundwater dynamics predictions
Corresponding Author
Fatih Gordu
Department of Civil and Environmental Engineering, University of South Florida, Tampa, Florida
St. Johns River Water Management District, Palatka, Florida
Correspondence
Fatih Gordu, St. Johns River Water Management District, 4087 Reid St., Palatka, FL 32178, USA.
Email: [email protected]
Search for more papers by this authorMahmood H. Nachabe
Department of Civil and Environmental Engineering, University of South Florida, Tampa, Florida
Search for more papers by this authorCorresponding Author
Fatih Gordu
Department of Civil and Environmental Engineering, University of South Florida, Tampa, Florida
St. Johns River Water Management District, Palatka, Florida
Correspondence
Fatih Gordu, St. Johns River Water Management District, 4087 Reid St., Palatka, FL 32178, USA.
Email: [email protected]
Search for more papers by this authorMahmood H. Nachabe
Department of Civil and Environmental Engineering, University of South Florida, Tampa, Florida
Search for more papers by this authorAbstract
A physically constrained wavelet-aided statistical model (PCWASM) is presented to analyse and predict monthly groundwater dynamics on multi-decadal or longer time scales. The approach retains the simplicity of regression modelling but is constrained by temporal scales of processes responsible for groundwater level variation, including aquifer recharge and pumping. The methodology integrates statistical correlations enhanced with wavelet analysis into established principles of groundwater hydraulics including convolution, superposition and the Cooper–Jacob solution. The systematic approach includes (1) identification of hydrologic trends and correlations using cross-correlation and multi-time scale wavelet analyses; (2) integrating temperature-based evapotranspiration and groundwater pumping stresses and (3) assessing model prediction performances using fixed-block k-fold cross-validation and split calibration-validation methods. The approach is applied at three hydrogeologicaly distinct sites in North Florida in the United States using over 40 years of monthly groundwater levels. The systematic approach identifies two patterns of cross-correlations between groundwater levels and historical rainfall, indicating low-frequency variabilities are critical for long-term predictions. The models performed well for predicting monthly groundwater levels from 7 to 22 years with less than 2.1 ft (0.7 m) errors. Further evaluation by the moving-block bootstrap regression indicates the PCWASM can be a reliable tool for long-term groundwater level predictions. This study provides a parsimonious approach to predict multi-decadal groundwater dynamics with the ability to discern impacts of pumping and climate change on aquifer levels. The PCWASM is computationally efficient and can be implemented using publicly available datasets. Thus, it should provide a versatile tool for managers and researchers for predicting multi-decadal monthly groundwater levels under changing climatic and pumping impacts over a long time period.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study were derived from the following resources available in the public domain: sjrwmd.com, srwmd.state.fl.us, ncdc.noaa.gov and usgs.gov
Supporting Information
Filename | Description |
---|---|
hyp14308-sup-0001-SupInfo.docxWord 2007 document , 352.6 KB | Data S1. Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., Shamseldin, A. Y., Solomatine, D. P., Toth, E., & Wilby, R. L. (2012). Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Progress in Physical Geography, 36(4), 480–513.
- Adamowski, J. (2008). River flow forecasting using wavelet and cross-wavelet transform models. Hydrological Processes, 22(25), 4877–4891.
- Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1–4), 28–40.
- Adamowski, J., & Prokoph, A. (2014). Determining the amplitude and timing of streamflow discontinuities: A cross wavelet analysis approach. Hydrological Processes, 28(5), 2782–2793.
- Aldrich, E. (2019). wavelets: Functions for computing wavelet filters, wavelet transforms and multiresolution analyses (R package version 0.3-0.1). https://CRAN.R-project.org/package=wavelets
- Alfons, A. (2012). cvTools: Cross-validation tools for regression models (R package version 0.3).
- Alley, W. M. (1984). On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models. Water Resources Research, 20(8), 1137–1149.
- Appenzeller, C., Schwander, J., Sommer, S., & Stocker, T. F. (1998). The North Atlantic Oscillation and its imprint on precipitation and ice accumulation in Greenland. Geophysical Research Letters, 25(11), 1939–1942.
- Bartolino, J. R. & Cunningham, W. L. (2003). Ground-water depletion across the nation (USGS Fact Sheet 103-03). http://pubs.er.usgs.gov/publication/fs10303
- Bear, J. (1979). Hydraulics of groundwater. McGraw Hill.
- Bellino, J. C., Kuniansky, E. L., O'Reilly, A. M., & Dixon, J. F. (2018). Hydrogeologic setting, conceptual groundwater flow system, and hydrologic conditions 1995–2010 in Florida and parts of Georgia, Alabama, and South Carolina (No. 2018–5030). US Geological Survey.
- Canty, A. J. (2002). Resampling methods in R: The boot package. The Newsletter of the R Project, 2/3, 2–7.
- Casagrande, E., Mueller, B., Miralles, D. G., Entekhabi, D., & Molini, A. (2015). Wavelet correlations to reveal multiscale coupling in geophysical systems. Journal of Geophysical Research: Atmospheres, 120(15), 7555–7572.
- Cazelles, B., Chavez, M., Berteaux, D., Ménard, F., Vik, J. O., Jenouvrier, S., & Stenseth, N. C. (2008). Wavelet analysis of ecological time series. Oecologia, 156(2), 287–304.
- Chen, Z., Grasby, S. E., & Osadetz, K. G. (2002). Predicting average annual groundwater levels from climatic variables: An empirical model. Journal of Hydrology, 260(1–4), 102–117.
- Clark, M. P., Bierkens, M. F., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V., Cai, X., Wood, A. W., & Peters-Lidard, C. D. (2017). The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences, 21(7), 3427–3440.
- Contreras, S., Boer, M. M., Alcalá, F. J., Domingo, F., García, M., Pulido-Bosch, A., & Puigdefábregas, J. (2008). An ecohydrological modelling approach for assessing long-term recharge rates in semiarid karstic landscapes. Journal of Hydrology, 351(1–2), 42–57.
- Cooper, H. H., Jr., & Jacob, C. E. (1946). A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos, Transactions American Geophysical Union, 27(4), 526–534.
10.1029/TR027i004p00526 Google Scholar
- Criss, R. E., & Criss, E. M. (2012). Prediction of well levels in the alluvial aquifer along the lower Missouri River. Groundwater, 50(4), 571–577.
- Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Vol. 1). Cambridge University Press.
10.1017/CBO9780511802843 Google Scholar
- De La Torre, L., Gimeno, L., Añel, J. A., & Nieto, R. (2007). The role of the solar cycle in the relationship between the North Atlantic oscillation and northern hemisphere surface temperatures. Advances in Atmospheric Sciences, 24(2), 191–198.
- Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A., & Durachta, J. W. (2006). GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics. Journal of Climate, 19(5), 643–674.
- Durden, D., Gordu, F., Hearn, D., Meridth, L., Angel, A., & Grubbs, T. (2019). North Florida Southeast Georgia groundwater model v1.1 (Technical Publication SJ2019-01). SJRWMD.
- Ebrahimi, H., & Rajaee, T. (2017). Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Global and Planetary Change, 148, 181–191.
- Elsner, J. B., & Schmertmann, C. P. (1994). Assessing forecast skill through cross validation. Weather and Forecasting, 9(4), 619–624.
- Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., Downer, C. W., Camporese, M., Davison, J. H., Ebel, B., & Jones, N. (2016). An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology, 537, 45–60.
- Faunt, C. C., Sneed, M., Traum, J., & Brandt, J. T. (2016). Water availability and land subsidence in the Central Valley, California, USA. Hydrogeology Journal, 24(3), 675–684.
- Gedalof, Z. E., & Smith, D. J. (2001). Interdecadal climate variability and regime-scale shifts in Pacific North America. Geophysical Research Letters, 28(8), 1515–1518.
- Gemitzi, A., & Stefanopoulos, K. (2011). Evaluation of the effects of climate and man intervention on ground waters and their dependent ecosystems using time series analysis. Journal of Hydrology, 403(1–2), 130–140.
- Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561–566.
- Halford, K. J., & Kuniansky, E. L. (2002). Documentation of spreadsheets for the analysis of aquifer-test and slug-test data (Open-File Report 02-197). U.S. Geological Survey.
- Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division, 108(3), 225–230.
- Holman, I. P., Rivas-Casado, M., Bloomfield, J. P., & Gurdak, J. J. (2011). Identifying non-stationary groundwater level response to North Atlantic Ocean-atmosphere teleconnection patterns using wavelet coherence. Hydrogeology Journal, 19(6), 1269–1278.
- Huo, X., Lei, L., Liu, Z., Hao, Y., Hu, B. X., & Zhan, H. (2016). Application of wavelet coherence method to investigate karst spring discharge response to climate teleconnection patterns. JAWRA Journal of the American Water Resources Association, 52(6), 1281–1296.
- Jackson, C. J., Wang, L., Pachoka, M., Mackay, J. D., & Bloomfield, J. P. (2016). Reconstruction of multi-decadal groundwater level time series. Hydrological Processes, 30(18), 3107–3312.
- Khalil, B., Broda, S., Adamowski, J., Ozga-Zielinski, B., & Donohoe, A. (2015). Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models. Hydrogeology Journal, 23(1), 121–141.
- Kisi, O. (2010). Wavelet regression model for short-term streamflow forecasting. Journal of Hydrology, 389(3–4), 344–353.
- Klove, B., Ala-Aho, P., Bertrand, G., Gurdak, J. J., Kupfersberger, H., Kværner, J., Muotka, T., Mykrä, H., Preda, E., Rossi, P., & Uvo, C. B. (2014). Climate change impacts on groundwater and dependent ecosystems. Journal of Hydrology, 518, 250–266.
- Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26). Springer.
10.1007/978-1-4614-6849-3 Google Scholar
- Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Jimenez, B., Miller, K., Oki, T., Şen, Z., & Shiklomanov, I. (2008). The implications of projected climate change for freshwater resources and their management. Hydrological Sciences Journal, 53(1), 3–10.
- Labat, D. (2005). Recent advances in wavelet analyses: Part 1. A review of concepts. Journal of Hydrology, 314(1–4), 275–288.
- Lahiri, S. N. (1999). Theoretical comparisons of block bootstrap methods. The Annals of Statistics, 27(1), 386–404.
- Long, A. J., & Mahler, B. J. (2013). Prediction, time variance, and classification of hydraulic response to recharge in two karst aquifers. Hydrology and Earth System Sciences, 17(1), 281–294.
- Mackay, J. D., Jackson, C. R., Brookshaw, A., Scaife, A. A., Cook, J., & Ward, R. S. (2015). Seasonal forecasting of groundwater levels in principal aquifers of the United Kingdom. Journal of Hydrology, 530, 815–828.
- Mackay, J. D., Jackson, C. R., & Wang, L. (2014). A lumped conceptual model to simulate groundwater level time–series. Environmental Modelling and Software, 61, 229–245.
- Maraun, D., & Kurths, J. (2004). Cross wavelet analysis: Significance testing and pitfalls. Nonlinear Processes in Geophysics, 11(4), 505–514.
- Masterson, J. P., Pope, J. P., Fienen, M. N., Monti, J., Jr., Nardi, M. R. & Finkelstein, J. S. (2016). Documentation of a groundwater flow model developed to assess groundwater availability in the northern Atlantic coastal plain aquifer system from Long Island, New York, to North Carolina (No. 2016-5076). US Geological Survey.
- Mayer, T. D., & Congdon, R. D. (2008). Evaluating climate variability and pumping effects in statistical analyses. Groundwater, 46(2), 212–227.
- Miller, J. A. (1990). Ground water atlas of the United States: Segment 6, Alabama, Florida, Georgia, South Carolina. U.S. Geological Survey Hydrologic Investigations Atlas 730-G.
- Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.
- Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785.
- Morlet, J., Arens, G., Fourgeau, E., & Glard, D. (1982). Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media. Geophysics, 47(2), 203–221.
- Neves, M. C., Jerez, S., & Trigo, R. M. (2019). The response of piezometric levels in Portugal to NAO, EA, and SCAND climate patterns. Journal of Hydrology, 568, 1105–1117.
- Neville, C. & S.S. Papadopulos & Associates Inc. (1998). ATRANS: Analytical solutions for three-dimensional solute transport from a patch source (Version V2). S.S. Papadopulos & Associates, Inc.
- Nourani, V., Mogaddam, A. A., & Nadiri, A. O. (2008). An ANN-based model for spatiotemporal groundwater level forecasting. Hydrological Processes: An International Journal, 22(26), 5054–5066.
- O'Reilly, A. M. (2004). A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model (Vol. 4, No. 4). US Geological Survey.
- Oude Essink, G. H. P., Van Baaren, E. S., & De Louw, P. G. (2010). Effects of climate change on coastal groundwater systems: A modeling study in The Netherlands. Water Resources Research, 46(10), 1–16.
- Oyebode, O., & Stretch, D. (2019). Neural network modeling of hydrological systems: A review of implementation techniques. Natural Resource Modeling, 32(1), e12189.
- Parlange, M. B., Katul, G. G., Cuenca, R. H., Kavvas, M. L., Nielsen, D. R., & Mata, M. (1992). Physical basis for a time series model of soil water content. Water Resources Research, 28(9), 2437–2446.
- Partal, T., & Kişi, Ö. (2007). Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Journal of Hydrology, 342(1-2), 199–212.
- Pasetto, D., Putti, M., & Yeh, W. W. G. (2013). A reduced-order model for groundwater flow equation with random hydraulic conductivity: Application to Monte Carlo methods. Water Resources Research, 49(6), 3215–3228.
- Percival, D. B., & Guttorp, P. (1994). Long-memory processes, the Allan variance and wavelets. In Wavelet analysis and its applications (Vol. 4, pp. 325–344). Academic Press.
- Percival, D. B., & Mofjeld, H. O. (1997). Analysis of subtidal coastal sea level fluctuations using wavelets. Journal of the American Statistical Association, 92(439), 868–880.
- Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis (Vol. 4). Cambridge University Press.
10.1017/CBO9780511841040 Google Scholar
- Perez-Valdivia, C., Sauchyn, D., & Vanstone, J. (2012). Groundwater levels and teleconnection patterns in the Canadian Prairies. Water Resources Research, 48, W07516. https://doi.org/10.1029/2011WR010930
- Peters, E., Torfs, P. J. J. F., Van Lanen, H. A. J., & Bier, G. (2003). Propagation of drought through groundwater – A new approach using linear reservoir theory. Hydrological Processes, 17(15), 3023–3040.
- Prokoph, A., Adamowski, J., & Adamowski, K. (2012). Influence of the 11 year solar cycle on annual streamflow maxima in southern Canada. Journal of Hydrology, 442, 55–62.
- Prokoph, A., & El Bilali, H. (2008). Cross-wavelet analysis: A tool for detection of relationships between paleoclimate proxy records. Mathematical Geosciences, 40(5), 575–586.
- Quilty, J., & Adamowski, J. (2018). Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework. Journal of Hydrology, 563, 336–353. https://doi.org/10.1016/j.jhydrol.2018.05.003
- R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/
- Reclamation. (2013). Downscaled CMIP3 and CMIP5 climate and hydrology projections. Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding Information, and Summary of User Needs, Prepared by the U.S. Department of the Interior, Bureau of Reclamation, Technical Services Center. http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
- Rehbinder, G. (2010). Analytical solutions for groundwater flow with arbitrary dimensionality and a finite well radius in fractured rock. Water Resources Research, 46(3), 1–9.
- Reilly, T. E., O. L. Franke, & G. D. Bennett (1987). The principle of superposition and its application in ground-water hydraulics. USGS Publications Warehouse. http://pubs.er.usgs.gov/publication/twri03B6
- Richey, A. S., Thomas, B. F., Lo, M. H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5238.
- Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., & Warton, D. I. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913–929.
- Roesch, A., & Schmidbauer, H. (2018). WaveletComp: Computational wavelet analysis (R package version 1.1). https://CRAN.R-project.org/package=WaveletComp
- Rust, R., Holman, I., Corstanje, R., Bloomfield, J. P., & Cuthbert, M. (2018). A conceptual model for climatic teleconnection signal control on groundwater variability in the UK and Europe. Earth-Science Reviews, 177, 164–174.
- Rust, W., Holman, I., Bloomfield, J. P., Cuthbert, M., & Corstanje, R. (2019). Understanding the potential of climate teleconnections to project future groundwater drought. Hydrology and Earth System Sciences, 23, 3233–3245.
- Sahoo, S., & Jha, M. K. (2013). Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment. Hydrogeology Journal, 21(8), 1865–1887.
- Sahoo, S., & Jha, M. K. (2015). On the statistical forecasting of groundwater levels in unconfined aquifer systems. Environmental Earth Sciences, 73(7), 3119–3136.
- Salas, J. D., & Smith, R. A. (1981). Physical basis of stochastic models of annual flows. Water Resources Research, 17(2), 428–430.
- Sanchez-Vila, X., & Fernàndez-Garcia, D. (2016). Debates – Stochastic subsurface hydrology from theory to practice: Why stochastic modeling has not yet permeated into practitioners? Water Resources Research, 52(12), 9246–9258.
- Sang, Y. F. (2012). A practical guide to discrete wavelet decomposition of hydrologic time series. Water Resources Management, 26(11), 3345–3365.
- Sang, Y. F. (2013). A review on the applications of wavelet transform in hydrology time series analysis. Atmospheric Research, 122, 8–15.
- Sattari, M. T., Mirabbasi, R., Sushab, R. S., & Abraham, J. (2018). Prediction of groundwater level in Ardebil plain using support vector regression and M5 tree model. Groundwater, 56(4), 636–646.
- Sepúlveda, N. (2002). Simulation of ground-water flow in the intermediate and Floridan aquifer systems in peninsular Florida (p. 130). US Department of the Interior, US Geological Survey.
- SJRWMD. (2018). Historical groundwater use data (provided by electronic communication).
- Smith, A., & Welsh, W. (2011). Review of groundwater models and modelling methodologies for the great Artesian Basin. CSIRO Water for a Healthy Country.
- Sneddon, I. N. (1976). Encyclopaedic dictionary of mathematics for engineers and applied scientists. Pergamon Press.
- Spulveda, N., Tiedeman, C. R., O'Reilly, A. M., Davis, J. B., & Burger, P. (2012). Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-Central Florida. US Department of the Interior, U.S. Geological Survey.
- Sun, F., & Yu, J. Y. (2009). A 10–15-yr modulation cycle of ENSO intensity. Journal of Climate, 22(7), 1718–1735.
- Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., & Treidel, H. (2013). Ground water and climate change. Nature Climate Change, 3(4), 322–329.
- Theis, C. V. (1935). The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. Eos, Transactions American Geophysical Union, 16(2), 519–524.
10.1029/TR016i002p00519 Google Scholar
- Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78.
- Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49(11), 1225–1231.
- USGS. (2000). The Sun and climate (Fact Sheet 095-00).
- Van Lanen, H. A. (2006). Drought propagation through the hydrological cycle. In S. Demuth, A. Gustard, E. Planos, F. Scatena, & E. Servat (Eds.), Climate variability and change (Vol. 308, pp. 122–127). IAHS Press.
- Van Lanen, H. A. J., Wanders, N., Tallaksen, L. M., & Van Loon, A. F. (2013). Hydrological drought across the world: Impact of climate and physical catchment structure. Hydrology and Earth System Sciences, 17, 1715–1732.
- Van Loon, A. F. (2015). Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2, 359–392. https://doi.org/10.1002/wat2.1085
- Van Loon, A. F., Tijdeman, E., Wanders, N., Van Lanen, H. J., Teuling, A. J., & Uijlenhoet, R. (2014). How climate seasonality modifies drought duration and deficit. Journal of Geophysical Research: Atmospheres, 119(8), 4640–4656.
- Veleda, D., Montagne, R., & Araujo, M. (2012). Cross-wavelet bias corrected by normalizing scales. Journal of Atmospheric and Oceanic Technology, 29(9), 1401–1408.
- Vogel, R. M., & Shallcross, A. L. (1996). The moving blocks bootstrap versus parametric time series models. Water Resources Research, 32(6), 1875–1882.
- Wegehenkel, M., & Kersebaum, K. C. (2009). An assessment of the impact of climate change on evapotranspiration, groundwater recharge, and low-flow conditions in a mesoscale catchment in Northeast Germany. Journal of Plant Nutrition and Soil Science, 172(6), 737–744.
- Willemink, J. (1988). Estimating natural recharge of ground water by moisture accounting and convolution. In Estimation of natural groundwater recharge (pp. 283–299). Springer.
10.1007/978-94-015-7780-9_17 Google Scholar
- Williams, L. J., & Kuniansky, E. L. (2016). Revised hydrogeologic framework of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina (Professional Paper 1807). United States Department of the Interior, U.S. Geological Survey.
- Yeh, H. F., Lee, C. H., Chen, J. F., & Chen, W. P. (2007). Estimation of groundwater recharge using water balance model. Water Resources, 34(2), 153–162.
- Yoon, H., Jun, S. C., Hyun, Y., Bae, G. O., & Lee, K. K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 396(1–2), 128–138.
- Yu, H. L., & Lin, Y. C. (2015). Analysis of space–time non-stationary patterns of rainfall–groundwater interactions by integrating empirical orthogonal function and cross wavelet transform methods. Journal of Hydrology, 525, 585–597.
- Zhu, L., Wang, Y., & Fan, Q. (2014). MODWT-ARMA model for time series prediction. Applied Mathematical Modelling, 38(5–6), 1859–1865.