Volume 35, Issue 2 e14010
WOMEN ADVANCING RESEARCH IN HYDROLOGICAL PROCESSES

Relating land surface, water table, and weathering fronts with a conceptual valve model for headwater catchments

Susan L. Brantley

Corresponding Author

Susan L. Brantley

Earth and Environmental Systems Institute, Pennsylvania State University, Pennsylvania, USA

Department of Geosciences, Pennsylvania State University, Pennsylvania, USA

Correspondence

Susan L. Brantley, Earth and Environmental Systems Institute and Department of Geosciences, 2217 EES Building, Pennsylvania State University, University Park, PA 16802.

Email: [email protected]

Search for more papers by this author
Marina I. Lebedeva

Marina I. Lebedeva

Earth and Environmental Systems Institute, Pennsylvania State University, Pennsylvania, USA

Search for more papers by this author
First published: 15 December 2020
Citations: 13
Funding information National Science Foundation, Grant/Award Numbers: EAR13-31726, EAR12-39285; U.S. Department of Energy, Grant/Award Number: DOE OBES DE-FG02-05ER15675

Abstract

Knowing little about how porosity and permeability are distributed at depth, we commonly develop models of groundwater by treating the subsurface as a homogeneous black box even though porosity and permeability vary with depth. One reason for this depth variation is that infiltrating meteoric water reacts with minerals to affect porosity in localized zones called reaction fronts. We are beginning to learn to map and model these fronts beneath headwater catchments and show how they are distributed. The subsurface landscapes defined by these fronts lie subparallel to the soil-air interface but with lower relief. They can be situated above, below, or at the water table. These subsurface landscapes of reaction are important because porosity developed from weathering can control subsurface water storage. In addition, porosity often changes at the weathering fronts, and when this affects permeability significantly, the front can act like a valve that re-orients water flowing through the subsurface. We explore controls on the positions of reaction fronts under headwater landscapes by accounting for the timescales of erosion, chemical equilibration, and solute transport. One strong control on the landscape of subsurface reaction is the land surface geometry, which is in turn a function of the erosion rate. In addition, the reaction fronts, like the water table, are strongly affected by the lithology and water infiltration rate. We hypothesize that relationships among the land surface, reaction fronts, and the water table are controlled by feedbacks that can push landscapes towards an ‘ideal hill’. In this steady state, reaction-front valves partition water volumes into shallow and deep flowpaths. These flows dissolve low- and high-solubility minerals, respectively, allowing their reaction fronts to advance at the erosion rate. This conceptualization could inform better models of subsurface porosity and permeability, replacing the black box.

DATA AVAILABILITY STATEMENT

Data sharing are not applicable to this article as no datasets were generated or analysed during the current study.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.