Electrochemical hydrogen storage: Achievements, emerging trends, and perspectives
Suraj Yadav
Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
Search for more papers by this authorCorresponding Author
Amandeep Singh Oberoi
Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
Correspondence
Amandeep Singh Oberoi, Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
Email: [email protected]
Search for more papers by this authorMadhup Kumar Mittal
Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
Search for more papers by this authorSuraj Yadav
Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
Search for more papers by this authorCorresponding Author
Amandeep Singh Oberoi
Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
Correspondence
Amandeep Singh Oberoi, Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
Email: [email protected]
Search for more papers by this authorMadhup Kumar Mittal
Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
Search for more papers by this authorSummary
Hydrogen being abundant, eco-friendly, is a promising alternative energy source to fossil fuels. Its practical application is limited because of difficulty in storage due to low energy density and safety issues. Solid-state electrochemical hydrogen storage is a promising method among several approaches of hydrogen storage to meet the U.S. Department of Energy's (DOE) targets. Till 2020, no hydrogen storage material has achieved targets due to lack of proper strategies. In view of meeting targets decided by U.S. DOE, a detailed review of whole progress made in electrochemical hydrogen storage approaches and materials is presented. The reported hydrogen storage capacities of Graphene (1.21 wt.%), reduced Graphene Oxide (2.7 wt.%), Mg-based alloys (up to 7.6 wt.%), hydrogen clathrates (up to 4.2 wt.%), Pervoskite oxides (up to 4 wt.%), and Nd2Sn2O7 (up to 14.86 wt.%) are consolidated at one place and disclosed. The shortcomings hindering current hydrogen storage technologies are summarized and the scope of future improvement in hydrogen storage is outlined. Emerging materials and technologies are mentioned which can progress towards achieving U.S. DOE targets. This review can assist researchers in choosing an appropriate strategy or potential material for electrochemical hydrogen storage.
Highlights
- Achievements in electrochemical hydrogen storage are reviewed.
- Improvement techniques in conventional electrochemical hydrogen storage are presented in tabular form.
- Emergences in hydrogen storage materials are listed.
- Future perspective to meet US DOE targets is decided on basis of review.
REFERENCES
- 1 Achieving net-zero emissions by 2050. World energy outlook, 2020.
- 2 Special report- global warming of 1.5°C. IPCC, 2018.
- 3Singla MK, Nijhawan P, Oberoi AS. Hydrogen fuel and fuel cell technology for cleaner future: a review. Environ Sci Pollut Res. 2021; 28(13): 15607-15626. doi:10.1007/s11356-020-12231-8
- 4 Transforming our world: the 2030 agenda for sustainable development. United Nations General Assembly, 2015.
- 5González-Álvarez MA, Montañés A, Olmos L. Towards a sustainable energy scenario? A worldwide analysis. Energy Econ. 2020; 87: 104738. doi:10.1016/j.eneco.2020.104738
- 6Hassan IA, Ramadan HS, Saleh MA, Hissel D. Hydrogen storage technologies for stationary and mobile applications: review, analysis and perspectives. Renew Sustain Energy Rev. 2021; 149(July):111311. doi:10.1016/j.rser.2021.111311
- 7Ren J, Musyoka NM, Langmi HW, Mathe M, Liao S. Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review. Int J Hydrogen Energy. 2017; 42(1): 289-311. doi:10.1016/j.ijhydene.2016.11.195
- 8Acar C, Dincer I. The potential role of hydrogen as a sustainable transportation fuel to combat global warming. Int J Hydrogen Energy. 2020; 45(5): 3396-3406. doi:10.1016/j.ijhydene.2018.10.149
- 9Das LM. Hydrogen-fueled internal combustion engines. Amsterdam: Elsevier Ltd; 2016.
10.1016/B978-1-78242-363-8.00007-4 Google Scholar
- 10 BloombergNEF. Key messages. Hydrogen Economy Outlook, 2020.
- 11Stroman RO, Schuette MW, Swider-Lyons K, Rodgers JA, Edwards DJ. Liquid hydrogen fuel system design and demonstration in a small long endurance air vehicle. Int J Hydrogen Energy. 2014; 39(21): 11279-11290. doi:10.1016/j.ijhydene.2014.05.065
- 12Gardiner M. Energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs. DOE Hydrog Fuel Cells Progr Rec. 2009. https://www.hydrogen.energy.gov/pdfs/9013_energy_requirements_for_hydrogen_gas_compression.pdf
- 13Eftekhari A, Fang B. Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int J Hydrogen Energy. 2017; 42(40): 25143-25165. doi:10.1016/j.ijhydene.2017.08.103
- 14Singla MK, Oberoi AS, Nijhawan P. Trends so far in hydrogen fuel cell technology: state of the art. Int J Adv Trends Comput Sci Eng. 2019; 8(4): 1146-1155. doi:10.30534/ijatcse/2019/23842019
10.30534/ijatcse/2019/23842019 Google Scholar
- 15Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G. The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements. Catal Today. 2007; 120(3-4): 246-256. doi:10.1016/j.cattod.2006.09.022
- 16Murthy SS. Report on Hydrogen Storage and Applications Other than Transportation. Ministry New Renew Energy, Government of India. 2016; 6: 200.
- 17Gholami T, Pirsaheb M. Review on effective parameters in electrochemical hydrogen storage. Int J Hydrogen Energy. 2021; 46(1): 783-795. doi:10.1016/j.ijhydene.2020.10.003
- 18Reyhani A, Mortazavi SZ, Moshfegh AZ, Golikand AN, Amiri M. Enhanced electrochemical hydrogen storage by catalytic Fe-doped multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition. J Power Sources. 2009; 188(2): 404-410. doi:10.1016/j.jpowsour.2008.11.131
- 19Jurewicz K, Frackowiak E, Béguin F. Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Appl. Phys. A Mater. Sci. Process. 2004; 78(7): 981-987. doi:10.1007/s00339-003-2418-8
- 20Liu Y, Pan H, Gao M, Wang Q. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J Mater Chem. 2011; 21(13): 4743-4755. doi:10.1039/c0jm01921f
- 21Niessen RAH, Notten PHL. Electrochemical hydrogen storage characteristics of thin film MgX (X=Sc, Ti, V, Cr) compounds. Electrochem Solid St. 2005; 8(10): 534-538. doi:10.1149/1.2012238
- 22 DOE technical targets for onboard hydrogen storage for light-duty vehicles. Hydrog. Fuel Cell Technol. Off
- 23Cuevas F, Joubert JM, Latroche M, Percheron-Guégan A. Intermetallic compounds as negative electrodes of Ni/MH batteries. Appl Phys A Mater Sci Process. 2001; 72(2): 225-238. doi:10.1007/s003390100775
- 24Oberoi AS, Nijhawan P, Singh P. A novel electrochemical hydrogen storage-based proton battery for renewable energy storage. Energies. 2019; 12(1): 82. doi:10.3390/en12010082
- 25Guo GF, Huang H, Xue FH, et al. Electrochemical hydrogen storage of the graphene sheets prepared by DC arc-discharge method. Surf Coatings Technol. 2013; 228(Suppl. 1): S120-S125. doi:10.1016/j.surfcoat.2012.07.016
- 26Klechikov A, Mercier G, Sharifi T, Baburin IA, Seifert G, Talyzin AV. Hydrogen storage in high surface area graphene scaffolds. Chem Commun. 2015; 51(83): 15280-15283. doi:10.1039/c5cc05474e
- 27Hwang JY, Lee SH, Sim KS, Kim JW. Synthesis and hydrogen storage of carbon nanofibers. Synth Met. 2002; 126(1): 81-85. doi:10.1016/S0379-6779(01)00543-4
- 28Mohan M, Vinod Kumar S, Anil Kumar E, Gayathi V. Hydrogen storage in carbon materials - A review. Energy Storage Mater. 2019; 1(2):e35.
- 29Xing Y, Fang B, Bonakdarpour A, Zhang S, Wilkinson DP. Facile fabrication of mesoporous carbon nanofibers with unique hierarchical nanoarchitecture for electrochemical hydrogen storage. Int J Hydrogen Energy. 2014; 39(15): 7859-7867. doi:10.1016/j.ijhydene.2014.03.106
- 30Chen X. Electrochemical hydrogen storage of carbon nanotubes and carbon nanofibers. Int J Hydrogen Energy. 2004; 29(7): 743-748. doi:10.1016/j.ijhydene.2003.08.010
- 31Gao XP, Lan Y, Pan GL, et al. Electrochemical hydrogen storage by carbon nanotubes decorated with metallic nickel. Electrochem Solid St. 2001; 4(10): 173-175. doi:10.1149/1.1397958
- 32Reyhani A, Mortazavi SZ, Golikand AN, Moshfegh AZ, Mirershadi S. The effect of various acids treatment on the purification and electrochemical hydrogen storage of multi-walled carbon nanotubes. J Power Sources. 2008; 183(2): 539-543. doi:10.1016/j.jpowsour.2008.05.039
- 33Koh G, Zhang YW, Pan H. First-principles study on hydrogen storage by graphitic carbon nitride nanotubes. Int J Hydrogen Energy. 2012; 37(5): 4170-4178. doi:10.1016/j.ijhydene.2011.11.109
- 34Danilov MO, Melezhik AV. Carbon nanostructures as hydrogen sorbent for anode of a chemical power cell. Russ J Appl Chem. 2004; 77(12): 1958-1961. doi:10.1007/s11167-005-0200-8
- 35Heidari S, Seif Mohammadi S, Oberoi AS, Andrews J. Technical feasibility of a proton battery with an activated carbon electrode. Int J Hydrogen Energy. 2018; 43(12): 6197-6209. doi:10.1016/j.ijhydene.2018.01.153
- 36Ouyang L, Huang J, Wang H, Liu J, Zhu M. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: a review. Mater Chem Phys. 2017; 200: 164-178. doi:10.1016/j.matchemphys.2017.07.002
- 37Deng C, Shi P, Zhang S. Effect of surface modification on the electrochemical performances of LaNi5 hydrogen storage alloy in Ni/MH batteries. Mater Chem Phys. 2006; 98(2–3): 514-518. doi:10.1016/j.matchemphys.2005.09.083
- 38Li CJ, Wang FR, Cheng WH, Li W, Zhao WT. Influence of high-rate quenching on the cycle stability and the structure of the AB5-type hydrogen storage alloys with different co content. J Alloys Compd. 2001; 315(1–2): 218-223. doi:10.1016/S0925-8388(00)01282-2
- 39Dongliang C, Chenglin Z, Zhewen M, et al. Improvement in high-temperature performance of co-free high-Fe AB 5-type hydrogen storage alloys. Int J Hydrogen Energy. 2012; 37(17): 12375-12383. doi:10.1016/j.ijhydene.2012.05.147
- 40Young K, Ouchi T, Banik A, Koch J, Fetcenko MA. Improvement in the electrochemical properties of gas atomized AB 2 metal hydride alloys by hydrogen annealing. Int J Hydrogen Energy. 2011; 36(5): 3547-3555. doi:10.1016/j.ijhydene.2010.12.051
- 41Zhu Y, Pan H, Gao M, Liu Y, Wang Q. Study on the structural and electrochemical properties of Ti-based multiphase hydrogen storage alloys. J Alloys Compd. 2002; 345(1–2): 201-209. doi:10.1016/S0925-8388(02)00415-2
- 42Wang YD, Ai XP, Yang HX. Electrochemical hydrogen storage behaviors of ultrafine amorphous co-B alloy particles. Chem Mater. 2004; 16(24): 5194-5197. doi:10.1021/cm049252f
- 43Wang Q, Jiao L, du H, et al. Electrochemical hydrogen storage property of co-S alloy prepared by ball-milling method. Int J Hydrogen Energy. 2010; 35(15): 8357-8362. doi:10.1016/j.ijhydene.2009.12.002
- 44Wang Y, Lee JM, Wang X. An investigation of the origin of the electrochemical hydrogen storage capacities of the ball-milled co-Si composites. Int J Hydrogen Energy. 2010; 35(4): 1669-1673. doi:10.1016/j.ijhydene.2009.12.026
- 45Zhu Y, Wang Y, Li L. Electrochemical properties of mg-based hydrogen storage alloys prepared by hydriding combustion synthesis and subsequent mechanical milling (HCS+MM). Int J Hydrogen Energy. 2008; 33(12): 2965-2969. doi:10.1016/j.ijhydene.2008.04.003
- 46Zhao X, Li J, Yao Y, Ma L, Shen X. Electrochemical hydrogen storage properties of a non-equilibrium Ti 2Ni alloy. RSC Adv. 2012; 2(5): 2149-2153. doi:10.1039/c2ra00846g
- 47Yan H, Xiong W, Wang L, Li B, Li J, Zhao X. Investigations on AB3-, A2B7- and A5B19-type La[sbnd]Y[sbnd]Ni system hydrogen storage alloys. Int J Hydrogen Energy. 2017; 42(4): 2257-2264. doi:10.1016/j.ijhydene.2016.09.049
- 48Møller KT, Sheppard D, Ravnsbæk DB, et al. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage. Energies. 2017; 10(10): 1645. doi:10.3390/en10101645
- 49Jindal H, Oberoi AS, Sandhu IS, Chitkara M. Potential porous mediums for electrochemical hydrogen storage: state of art and comparative study. Mater Today Proc. 2020; 21: 1888-1898. doi:10.1016/j.matpr.2020.01.246
- 50Ye L, Wu C, Guo W, Xie Y. MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties. Chem Commun. 2006; 2(45): 4738-4740. doi:10.1039/b610601c
- 51Hu P, Cao Y, Lu B. Flowerlike assemblies of Bi2S3 nanorods by solvothermal route and their electrochemical hydrogen storage performance. Mater Lett. 2013; 106: 297-300. doi:10.1016/j.matlet.2013.05.049
- 52Jin R, Li G, Xu Y, Liu J, Chen G. Uniform Bi2S3 nanorods-assembled hollow spheres with excellent electrochemical hydrogen storage abilities. Int J Hydrogen Energy. 2014; 39(1): 356-365. doi:10.1016/j.ijhydene.2013.10.007
- 53Zhang B, Ye X, Dai W, Hou W, Xie Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of porous spongelike Ni3S2 nanostructures grown directly on nickel foils. Chem A Eur J. 2006; 12(8): 2337-2342. doi:10.1002/chem.200501005
- 54Sun Z, Liufu S, Chen X, Chen L. Controllable synthesis and electrochemical hydrogen storage properties of Bi2Se3 architectural structures. Chem Commun. 2010; 46(18): 3101-3103. doi:10.1039/b924655j
- 55Gygi D, Bloch ED, Mason JA, et al. Hydrogen storage in the expanded pore metal-organic frameworks M2(dobpdc) (M=mg, Mn, Fe, co, Ni, Zn). Chem Mater. 2016; 28(4): 1128-1138. doi:10.1021/acs.chemmater.5b04538
- 56Tedesco AC, Primo FL, Beltrame M. Phthalocyanines: synthesis, characterization and biological applications of photodynamic therapy (PDT), nanobiotechnology, magnetohyperthermia and photodiagnosis (Theranostics). Amsterdam: Elsevier Ltd; 2016.
- 57Salehabadi A, Morad N, Ahmad MI. A study on electrochemical hydrogen storage performance of Β-copper phthalocyanine rectangular nanocuboids. Renew Energy. 2020; 146: 497-503. doi:10.1016/j.renene.2019.06.176
- 58Hu X, Skadtchenko BO, Trudeau M, Antonelli DM. Hydrogen storage in chemically reducible mesoporous and microporous Ti oxides. J Am Chem Soc. 2006; 128(36): 11740-11741. doi:10.1021/ja0639766
- 59Kubas GJ. Metal dihydrogen and s-bond complexes: structure, theory, and reactivity. Berlin: Springer Science & Business Media; 2001.
10.1007/b113929 Google Scholar
- 60Li PX, XueAi XJH, YunChen D. Magnetic and electromagnetic properties of composites of iron oxide and co–B alloy prepared by chemical reduction. J Magn Magn Mater. 2011; 323(1): 14-21.
- 61Sarkar J, Bhattacharyya S. Application of graphene and graphene-based materials in clean energy-related devices Minghui. Arch Thermodyn. 2012; 33(4): 23-40. doi:10.1002/er
- 62Wang L, Yang RT. New sorbents for hydrogen storage by hydrogen spillover - A review. Energ Environ Sci. 2008; 1(2): 268-279. doi:10.1039/b807957a
- 63Blagojević VA, Minić Dejan G, Grbović Novaković J, Minic Dragica M. Hydrogen economy: modern concepts, challenges and perspectives. Hydrog Energy - Challenges Perspect. 2014;(June): 2012. doi:10.5772/46098
10.5772/46098 Google Scholar
- 64Boateng E, Chen A. Recent advances in nanomaterial-based solid-state hydrogen storage. Mater Today Adv. 2020; 6:100022. doi:10.1016/j.mtadv.2019.100022
10.1016/j.mtadv.2019.100022 Google Scholar
- 65Huang HW, Hsieh HJ, Lin IH, Tong YJ, Chen HT. Hydrogen adsorption and storage in heteroatoms (B, N) modified carbon-based materials decorated with alkali metals: a computational study. J Phys Chem C. 2015; 119(14): 7662-7669. doi:10.1021/acs.jpcc.5b01416
- 66Ariga K, Vinu A, Yamauchi Y, Ji Q, Hill JP. Nanoarchitectonics for mesoporous materials. Bull Chem Soc Jpn. 2012; 85(1): 1-32. doi:10.1246/bcsj.20110162
- 67Baig N, Kammakakam I, Falath W, Kammakakam I. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021; 2(6): 1821-1871. doi:10.1039/d0ma00807a
10.1039/D0MA00807A Google Scholar
- 68Min YJ, Lee WJ, Gwak GH, Paek SM, Oh JM. Synthesis of Ni/graphene nanosheets via electron beam irradiation and their enhanced electrochemical hydrogen storage properties. Bull Korean Chem Soc. 2015; 36(11): 2627-2631. doi:10.1002/bkcs.10530
- 69Brieño-Enriquez KM, Ledesma-García J, Perez-Bueno JJ, Godinez LA, Terrones H, Ángeles-Chavez C. Bonding titanium on multi-walled carbon nanotubes for hydrogen storage: an electrochemical approach. Mater Chem Phys. 2009; 115(2–3): 521-525. doi:10.1016/j.matchemphys.2009.02.004
- 70Yang RT, Wang Y. Catalyzed hydrogen spillover for hydrogen storage. J Am Chem Soc. 2009; 131(12): 4224-4226. doi:10.1021/ja808864r
- 71Shiraz HG, Shiraz MG. Palladium nanoparticle and decorated carbon nanotube for electrochemical hydrogen storage. Int J Hydrogen Energy. 2017; 42(16): 11528-11533. doi:10.1016/j.ijhydene.2017.03.129
- 72Qin X, Gao XP, Liu H, et al. Electrochemical hydrogen storage of multiwalled carbon nanotubes. Electrochem Solid St. 2000; 3(12): 532-535. doi:10.1149/1.1391200
- 73Xie L, Li XQ. Study on electrochemical hydrogen storage of multi-walled carbon nanotubes. Adv Mater Res. 2007; 26–28: 831-834. doi:10.4028/scientific.net/amr.26-28.831
- 74Mortazavi SZ, Parvin P, Reyhani A, Malekfar R, Mirershadi S. Hydrogen storage property of laser induced Pd-nanoparticle decorated multi-walled carbon nanotubes. RSC Adv. 2013; 3(5): 1397-1409. doi:10.1039/c2ra22224h
- 75Yu Y, Zhao N, Shi C, He C, Liu E, Li J. Electrochemical hydrogen storage of expanded graphite decorated with TiO2 nanoparticles. Int J Hydrogen Energy. 2012; 37(7): 5762-5768. doi:10.1016/j.ijhydene.2011.12.151
- 76Boateng E, Dondapati JS, Thiruppathi AR, Chen A. Significant enhancement of the electrochemical hydrogen uptake of reduced graphene oxide via boron-doping and decoration with Pd nanoparticles. Int J Hydrogen Energy. 2020; 45(53): 28951-28963. doi:10.1016/j.ijhydene.2020.07.128
- 77Chen W, Zhu Y, Yang C, Zhang J, Li M, Li L. Significantly improved electrochemical hydrogen storage properties of magnesium nickel hydride modified with nano-nickel. J Power Sources. 2015; 280: 132-140. doi:10.1016/j.jpowsour.2015.01.089
- 78Ağaoğlu GH, Orhan G. An electrochemical investigation of mg–Ni hydrogen storage alloys by mechanical alloying. Miner Met Mater Ser. 2017; Part F8: 375-380. doi:10.1007/978-3-319-52392-7_53
10.1007/978?3?319?52392?7_53 Google Scholar
- 79Gao XP, Wang Y, Lu ZW, et al. Preparation and electrochemical hydrogen storage of the nanocrystalline LaMg12 alloy with Ni powders. Chem Mater. 2004; 16(13): 2515-2517. doi:10.1021/cm049774v
- 80Anik M. Improvement of the electrochemical hydrogen storage performance of magnesium based alloys by various additive elements. Int J Hydrogen Energy. 2012; 37(2): 1905-1911. doi:10.1016/j.ijhydene.2011.06.107
- 81Seo MD, Kim A, Jung H. Co metal nanoparticles incorporated three-dimensional mesoporous graphene nanohybrids for electrochemical hydrogen storage. J Solid State Chem. 2019; 269: 151-157. doi:10.1016/j.jssc.2018.09.026
- 82Ramezani Z, Dehghani H. Effect of nitrogen and sulfur co-doping on the performance of electrochemical hydrogen storage of graphene. Int J Hydrogen Energy. 2019; 44(26): 13613-13622. doi:10.1016/j.ijhydene.2019.03.255
- 83Zhang C, Li J, Shi C, He C, Liu E, Zhao N. Effect of Ni, Fe and Fe-Ni alloy catalysts on the synthesis of metal contained carbon nano-onions and studies of their electrochemical hydrogen storage properties. J Energy Chem. 2014; 23(3): 324-330. doi:10.1016/S2095-4956(14)60154-6
- 84George JK, Yadav A, Verma N. Electrochemical hydrogen storage behavior of Ni-ceria impregnated carbon micro-nanofibers. Int J Hydrogen Energy. 2021; 46(2): 2491-2502. doi:10.1016/j.ijhydene.2020.10.077
- 85Zhou L, Liu D, Li J, Tang H, Xie Z, Qu D. Electrochemical hydrogen storage in a nitrogen-doped uniformed microporous carbon. Int J Hydrogen Energy. 2018; 43(31): 14096-14102. doi:10.1016/j.ijhydene.2018.06.029
- 86Pan H, Li R, Liu Y, et al. Structure and electrochemical properties of the Fe substituted Ti-V-based hydrogen storage alloys. J Alloys Compd. 2008; 463(1–2): 189-195. doi:10.1016/j.jallcom.2007.09.042
- 87Zhang Y, Jiao L, Wang Y, et al. Influence of CoSi on the electrochemical hydrogen storage properties of MgNi alloy. Int J Hydrogen Energy. 2008; 33(18): 4819-4823. doi:10.1016/j.ijhydene.2008.05.098
- 88Anik M. Improvement of the electrochemical hydrogen storage performance of Mg2Ni by the partial replacements of mg by Al, Ti and Zr. J Alloys Compd. 2009; 486(1–2): 109-114. doi:10.1016/j.jallcom.2009.06.127
- 89Anik M, Özdemir G, Küükdeveci N, Baksan B. Effect of Al, B, Ti and Zr additive elements on the electrochemical hydrogen storage performance of MgNi alloy. Int J Hydrogen Energy. 2011; 36(2): 1568-1577. doi:10.1016/j.ijhydene.2010.10.087
- 90Lv J, Wang Q, Chen P, et al. Effect of ball-milling time and Pd addition on electrochemical hydrogen storage performance of Co2B alloy. Solid State Sci. 2020; 103(March):106184. doi:10.1016/j.solidstatesciences.2020.106184
- 91Zhang Y, Li C, Cai Y, Hu F, Liu Z, Guo S. Highly improved electrochemical hydrogen storage performances of the Nd-cu-added Mg2Ni-type alloys by melt spinning. J Alloys Compd. 2014; 584: 81-86. doi:10.1016/j.jallcom.2013.09.019
- 92Zhao X, Zhou J, Shen X, Yang M, Ma L. Structure and electrochemical hydrogen storage properties of a 2B-type Ti-Zr-Ni alloys. Int J Hydrogen Energy. 2012; 37(6): 5050-5055. doi:10.1016/j.ijhydene.2011.12.010
- 93Wang Y, Qiao S, Wang X. Electrochemical hydrogen storage properties of ball-milled NdMg12 alloy with Ni powders. Int J Hydrogen Energy. 2008; 33(3): 1023-1027. doi:10.1016/j.ijhydene.2007.11.020
- 94Zhao J, Zhou X, Guo Y, et al. Effect of palladium addition on electrochemical hydrogen storage properties of co 0.9 cu 0.1 Si alloy. Solid State Sci. 2019; 91(January): 1-6. doi:10.1016/j.solidstatesciences.2019.02.011
- 95Liao B, Lei YQ, Lu GL, Chen LX, Pan HG, Wang QD. The electrochemical properties of LaxMg3-xNi9 (x=1.0-2.0) hydrogen storage alloys. J Alloys Compd. 2003; 356–357: 746-749. doi:10.1016/S0925-8388(03)00083-5
- 96Xiao X, Chen L, Hang Z, et al. Microstructures and electrochemical hydrogen storage properties of novel mg-Al-Ni amorphous composites. Electrochem Commun. 2009; 11(3): 515-518. doi:10.1016/j.elecom.2008.12.044
- 97Zhang YH, Ren HP, Li BW, Guo SH, Pang ZG, Wang XL. Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg20Ni10-xCox(x=0-4) alloys prepared by melt spinning. Int J Hydrogen Energy. 2009; 34(19): 8144-8151. doi:10.1016/j.ijhydene.2009.07.097
- 98Li S, Pan G, Zhang Y, et al. Electrochemical properties of MmNi3.6Co0.7Al0.3Mn0.4 alloy containing carbon nanotubes. J Alloys Compd. 2003; 353(1–2): 295-300. doi:10.1016/S0925-8388(02)01296-3
- 99Zhang Y h, Ren H p, Li B w, Guo S h, Wang Q c, Wang X l. Structures and electrochemical hydrogen storage behaviours of La0.75-xPrxMg0.25Ni3.2Co0.2Al0.1 (x=0-0.4) alloys prepared by melt spinning. Int J Hydrogen Energy. 2009; 34(15): 6335-6342. doi:10.1016/j.ijhydene.2009.06.007
- 100Balogun MS, Wang ZM, Chen HX, Deng JQ, Yao QR, Zhou HY. Effect of Al content on structure and electrochemical properties of LaNi4.4 - xCo0.3Mn0.3Alx hydrogen storage alloys. Int J Hydrogen Energy. 2013; 38(25): 10926-10931. doi:10.1016/j.ijhydene.2013.02.139
- 101Zhang YH, Chen LC, Yang T, Xu C, Ren HP, Zhao DL. The electrochemical hydrogen storage performances of Si-added La–mg–Ni–co-based A2B7-type electrode alloys. Rare Met. 2015; 34(8): 569-579. doi:10.1007/s12598-013-0053-x
- 102Wang L, Zhang X, Zhou S, et al. Effect of Al content on the structural and electrochemical properties of A2B7 type La–Y–Ni based hydrogen storage alloy. Int J Hydrogen Energy. 2020; 45(33): 16677-16689. doi:10.1016/j.ijhydene.2020.04.136
- 103Masjedi-Arani M, Salavati-Niasari M. Novel synthesis of Zn2GeO4/graphene nanocomposite for enhanced electrochemical hydrogen storage performance. Int J Hydrogen Energy. 2017; 42(27): 17184-17191. doi:10.1016/j.ijhydene.2017.05.118
- 104Ghorbani R, Behrangi S, Aghajani H, Taghizadeh Tabrizi A, Abdian N. Application of synthesized porous 3D graphene structure for electrochemical hydrogen storage. Mater Sci Eng B Solid-State Mater Adv Technol. 2021; 268(March):115139. doi:10.1016/j.mseb.2021.115139
- 105Wang Y, Deng W, Liu X, Wang X. Electrochemical hydrogen storage properties of ball-milled multi-wall carbon nanotubes. Int J Hydrogen Energy. 2009; 34(3): 1437-1443. doi:10.1016/j.ijhydene.2008.11.085
- 106Krishnamurthy G, Namitha R, Agarwal S. Synthesis of carbon nanotubes and carbon spheres and study of their hydrogen storage property by electrochemical method. Procedia Mater Sci. 2014; 5: 1056-1065. doi:10.1016/j.mspro.2014.07.397
- 107Namitha R, Radhika D, Krishnamurthy G. Hydrothermally synthesized carbon nanotubes for electrochemical hydrogen storage application. Vopr Khimii i Khimicheskoi Tekhnologii. 2019; 2019(3): 30-34. doi:10.32434/0321-4095-2019-124-3-30-34
10.32434/0321?4095?2019?124?3?30?34 Google Scholar
- 108Babel K, Janasiak D, Jurewicz K. Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials. Carbon N Y. 2012; 50(14): 5017-5026. doi:10.1016/j.carbon.2012.06.030
- 109Zhang C, Li J, Liu E, et al. Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon N. Y. 2012; 50(10): 3513-3521. doi:10.1016/j.carbon.2012.03.019
- 110Anik M. Electrochemical hydrogen storage capacities of Mg2Ni and MgNi alloys synthesized by mechanical alloying. J Alloys Compd. 2010; 491(1–2): 565-570. doi:10.1016/j.jallcom.2009.11.004
- 111Zhu Y, Yang C, Zhu J, Li L. Structural and electrochemical hydrogen storage properties of mg 2Ni-based alloys. J Alloys Compd. 2011; 509(17): 5309-5314. doi:10.1016/j.jallcom.2011.02.017
- 112Gao P, Yang S, Xue Z, et al. High energy ball-milling preparation of co-B amorphous alloy with high electrochemical hydrogen storage ability. J Alloys Compd. 2012; 539: 90-96. doi:10.1016/j.jallcom.2012.06.008
- 113Zhao J, Zhai X, Tao X, et al. Effect of MWCNTs and lithium modified MWCNTs on electrochemical hydrogen storage properties of Co0.9Cu0.1Si alloy. Int J Hydrogen Energy. 2018; 43(29): 13383-13392. doi:10.1016/j.ijhydene.2018.05.109
- 114Wang Y, Wang X, Li CM. Electrochemical hydrogen storage of ball-milled MmMg12 alloy-Ni composites. Int J Hydrogen Energy. 2010; 35(8): 3550-3554. doi:10.1016/j.ijhydene.2010.01.104
- 115Huang LW, Elkedim O, Jarzebski M, Hamzaoui R, Jurczyk M. Structural characterization and electrochemical hydrogen storage properties of Mg2Ni1-xMnx(x=0, 0.125, 0.25, 0.375) alloys prepared by mechanical alloying. Int J Hydrogen Energy. 2010; 35(13): 6794-6803. doi:10.1016/j.ijhydene.2010.04.023
- 116Zhang Z, Elkedim O, Balcerzak M, Jurczyk M. Structural and electrochemical hydrogen storage properties of MgTiNix(x = 0.1, 0.5, 1, 2) alloys prepared by ball milling. Int J Hydrogen Energy. 2016; 41(27): 11761-11766. doi:10.1016/j.ijhydene.2015.11.168
- 117Hou J, Liu Z, Zhu Y, et al. Electrochemical hydrogen storage performance of Mg3GeNi2 alloy. Intermetallics. 2020; 127(September):106961. doi:10.1016/j.intermet.2020.106961
- 118Yan C, Chen G, Jin R, Zou X, Xu H, Lv C. Well-defined Sb2S3 nanostructures: citric acid-assisted synthesis, electrochemical hydrogen storage properties. Cryst Res Technol. 2013; 48(8): 566-573. doi:10.1002/crat.201300151
- 119Bhat KS, Nagaraja HS. Electrochemical hydrogen-storage performance of copper sulfide micro-hexagons. Int J Hydrogen Energy. 2021; 46(7): 5530-5536. doi:10.1016/j.ijhydene.2020.11.133
- 120Gholami T, Salavati-Niasari M, Varshoy S. Electrochemical hydrogen storage capacity and optical properties of NiAl2O4/NiO nanocomposite synthesized by green method. Int J Hydrogen Energy. 2017; 42(8): 5235-5245. doi:10.1016/j.ijhydene.2016.10.132
- 121Razavi FS, Morassaei MS, Salehabadi A, Salavati-Niasari M, Moayedi H. Auto-combustion synthesis, structural analysis, and electrochemical solid-state hydrogen storage performance of strontium cobalt oxide nanostructures. Int J Hydrogen Energy. 2019; 44(59): 31183-31191. doi:10.1016/j.ijhydene.2019.10.012
- 122Chang C, Gao P, Bao D, et al. Ball-milling preparation of one-dimensional co-carbon nanotube and co-carbon nanofiber core/shell nanocomposites with high electrochemical hydrogen storage ability. J Power Sources. 2014; 255: 318-324. doi:10.1016/j.jpowsour.2014.01.034
- 123Osada N, Morimitsu M, Takano K. Cycling performance of a metal hydride-air rechargeable battery. ECS Meeting Abstracts. Bristol: IOP Publishing; 2010: 41-42. doi:10.1149/ma2010-02/4/194
10.1149/ma2010?02/4/194 Google Scholar
- 124Purushothaman BK, Wainright JS. Analysis of pressure variations in a low-pressure nickel-hydrogen battery. Part 2: cells with metal hydride storage. J Power Sources. 2012; 206: 421-428. doi:10.1016/j.jpowsour.2012.01.149
- 125Anik M. Effect of titanium additive element on the discharging behavior of MgNi alloy electrode. Int J Hydrogen Energy. 2011; 36(23): 15075-15080. doi:10.1016/j.ijhydene.2011.08.121
- 126Anik M, Karanfil F, Küükdeveci N. Development of the high performance magnesium based hydrogen storage alloy. Int J Hydrogen Energy. 2012; 37(1): 299-308. doi:10.1016/j.ijhydene.2011.09.057
- 127Zinatloo-Ajabshir S, Morassaei MS, Amiri O, Salavati-Niasari M, Foong LK. Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram Int. 2020; 46(11): 17186-17196. doi:10.1016/j.ceramint.2020.03.014
- 128Zinatloo-Ajabshir S, Salehi Z, Amiri O, Salavati-Niasari M. Simple fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a potential electrochemical hydrogen storage material. J Alloys Compd. 2019; 791: 792-799. doi:10.1016/j.jallcom.2019.04.005
- 129Zacharia R, Rather SU. Review of solid state hydrogen storage methods adopting different kinds of novel materials. J Nanomater. 2015; 2015: 1-18. doi:10.1155/2015/914845
- 130Davoodabadi A, Mahmoudi A, Ghasemi H. The potential of hydrogen hydrate as a future hydrogen storage medium. iScience. 2021; 24(1):101907. doi:10.1016/j.isci.2020.101907
- 131Gencer A, Surucu G, Al S. MgTiO3Hx and CaTiO3Hx perovskite compounds for hydrogen storage applications. Int J Hydrogen Energy. 2019; 44(23): 11930-11938. doi:10.1016/j.ijhydene.2019.03.116
- 132Lahlou Nabil MA, Fenineche N, Popa I, Sunyol JJ. Morphological, structural and hydrogen storage properties of LaCrO3 perovskite-type oxides. Energies. 2022; 15(4): 1463. doi:10.3390/en15041463