Recent biopolymers used for membrane fuel cells: Characterization analysis perspectives
Maryam Taufiq Musa
Institute of Fuel Cell, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Norazuwana Shaari
Institute of Fuel Cell, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Correspondence
Norazuwana Shaari, Institute of Fuel Cell, Universiti Kebangsaan Malaysia, Bangi Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorSiti Kartom Kamarudin
Institute of Fuel Cell, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Search for more papers by this authorWai Yin Wong
Institute of Fuel Cell, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Search for more papers by this authorMaryam Taufiq Musa
Institute of Fuel Cell, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Norazuwana Shaari
Institute of Fuel Cell, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Correspondence
Norazuwana Shaari, Institute of Fuel Cell, Universiti Kebangsaan Malaysia, Bangi Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorSiti Kartom Kamarudin
Institute of Fuel Cell, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Search for more papers by this authorWai Yin Wong
Institute of Fuel Cell, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Search for more papers by this authorFunding information: Kementerian Pendidikan Malaysia, Grant/Award Number: FRGS/1/2021/STG05/UKM/02/10
Summary
The emergence of biopolymers as polymer electrolyte membrane for non-Nafion used fuel cell application in recent years was an impactful finding. This review gives a different approach to researchers, by exposing the characterization analysis perspectives of developed materials from biomass sources – alginates, carrageenan, cellulose, chitosan and polyhydroxyalkanoates. Their membrane performances are proven in this work through chemistry understandings, hence assuring a clear picture to gain information of these biopolymers' behavior as PEM. These five bio-precursor materials are believed to perform as high potential PEM alternatives, thus this study appeared to be an insightful guidance to the industry replacing high cost Nafion membrane to a lower cost membrane sources for future massive production economically benign.
HIGHLIGHTS
- Biopolymers are one of the promising natural sources to be utilized as the essential PEM in fuel cell
- These biopolymers to be highlighted in this review are alginates, chitosan, carrageenan, cellulose and starch
- Electronic biopolymers like carbon composites, hydrogels, nucleic acid, polyester, polysaccharide and protein imposed great features with their abundant functional groups, strong electrical conductivity, excellent ion conduction, versatility and stability
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- 1Shaari N, Kamarudin SK. Current status, opportunities, and challenges in fuel cell catalytic application of aerogels. Int J Energy Res. 2019; 43(7): 2447-2467. doi:10.1002/er.4423
- 2Peighambardoust SJ, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy. 2010; 35(17): 9349-9384. doi:10.1016/j.ijhydene.2010.05.017
- 3Kim DJ, Jo MJ, Nam SY. A review of polymer – nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem. 2015; 21: 36-52. doi:10.1016/j.jiec.2014.04.030
- 4Shaari N, Kamarudin SK. Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: an overview. Int J Energy Res. 2019; 43(7): 2756-2794. doi:10.1002/er.4348
- 5Zhang H, Shen PK. Recent development of polymer electrolyte membranes for fuel cells. Chem Rev. 2012; 112: 2780-2832. doi:10.1021/cr200035s
- 6Pasini Cabello SD, Mollá S, Ochoa NA, Marchese J, Giménez E, Compañ V. New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC. J Power Sources. 2014; 265: 345-355. doi:10.1016/j.jpowsour.2014.04.093
- 7Lin JS, Kumar SR, Ma WT, et al. Gradiently distributed iron oxide@graphene oxide nanofillers in quaternized polyvinyl alcohol composite to enhance alkaline fuel cell power density. J Memb Sci. 2017; 543: 28-39. doi:10.1016/j.memsci.2017.08.045
- 8Jiang X, Sun Y, Zhang H, Hou L. Preparation and characterization of quaternized poly(vinyl alcohol)/chitosan/MoS2 composite anion exchange membranes with high selectivity. Carbohydr Polym. 2018; 180: 96-103. doi:10.1016/j.carbpol.2017.10.023
- 9Nur NF, Shyuan LK, Mohamad AB, Kadhum AAH. Review on biopolymer membranes for fuel cell applications. Appl Mech Mater. 2013; 291–294: 614-617. doi:10.4028/scientific.net/AMM.291-294.614
10.4028/www.scientific.net/AMM.291-294.614 Google Scholar
- 10Walkowiak-Kulikowska J, Wolska J, Koroniak H. Biopolymer Membranes in Fuel Cell Applications. Amsterdam: Elsevier Inc.; 2020.
10.1016/B978-0-12-818134-8.00018-3 Google Scholar
- 11Sharma B, Malik P, Jain P. Biopolymer reinforced nanocomposites: a comprehensive review. Mater Today Commun. 2018; 16: 1-39. doi:10.1016/j.mtcomm.2018.07.004
- 12Li X, Ding C, Li X, et al. Electronic biopolymers: from molecular engineering to functional devices. Chem Eng J. 2020; 397:125499. doi:10.1016/j.cej.2020.125499
- 13Zakaria Z, Shaari N, Kamarudin SK, Bahru R, Musa MT. A review of progressive advanced polymer nanohybrid membrane in fuel cell application. Int J Energy Res. 2020; 44: 1-41. doi:10.1002/er.5516
- 14Kabir E, Kaur R, Lee J, Kim K-H, Kwon EE. Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J Clean Prod. 2020; 258:120536. doi:10.1016/j.jclepro.2020.120536
- 15McNaught AD, Wilkinson A. Compendium of chemical terminology: IUPAC recommendations. Hoboken, NJ: Blackwell Science; 1997; 2.
- 16 ASTM, “ Standard terminology relating to plastics,” ASTM D883-19b, 2019. https://www.astm.org/Standards/D883.html
- 17Machado G, Santos F, Lourega R, et al. Biopolymers from lignocellulosic biomass. In AP Ingle, A Chandel, K Anuj, SS Silva (eds), Lignocellulosic biorefining technologies. Hoboken, NJ: Wiley Blackwell; 2020; 125-158. doi:10.1002/9781119568858.ch7
10.1002/9781119568858.ch7 Google Scholar
- 18Boneberg BS, Machado GD, Santos DF, et al. Biorefinery of lignocellulosic biopolymers. Rev Electron Cient da UERGS. 2016; 2: 79-100.
10.21674/2448-0479.21.79-100 Google Scholar
- 19 E-Bioplastics, “ Bioplastics: Industry standards & labels,” 2018.
- 20Yashas Gowda TG, Sanjay MR, Subrahmanya Bhat K, Madhu P, Senthamaraikannan P, Yogesha B. Polymer matrix-natural fiber composites: an overview. Cogent Eng. 2018; 5(1): 1-13. doi:10.1080/23311916.2018.1446667
- 21Ge M, Miao S, Liu J, Gang H, Yang S. Laboratory studies on a novel salt-tolerant and alkali-free flooding system composed of a biopolymer and a bio-based surfactant for oil recovery. J Petrol Sci Eng. 2021; 196: 107736. doi:10.1016/j.petrol.2020.107736
- 22Jmiai A, el Ibrahimi B, Tara A, et al. The effect of the two biopolymers ‘sodium alginate and chitosan’ on the inhibition of copper corrosion in 1 M hydrochloric acid. Mater Today Proc. 2020; 22: 12-15. doi:10.1016/j.matpr.2019.08.057
- 23Oukhrib R, el Ibrahimi B, Abou Oualid H, et al. In silico investigations of alginate biopolymer on the Fe (110), cu (111), Al (111) and Sn (001) surfaces in acidic media: quantum chemical and molecular mechanic calculations. J Mol Liq. 2020; 312:113479. doi:10.1016/j.molliq.2020.113479
- 24Divya K, Rana D, Alwarappan S, Abirami Saraswathi MSS, Nagendran A. Investigating the usefulness of chitosan based proton exchange membranes tailored with exfoliated molybdenum disulfide nanosheets for clean energy applications. Carbohydr Polym. 2019; 208: 504-512. doi:10.1016/j.carbpol.2018.12.092
- 25Shuai C, Yu L, Feng P, Gao C, Peng S. Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: the role of coupling agent. Colloids Surf B Biointerfaces. 2020; 193:111083. doi:10.1016/j.colsurfb.2020.111083
- 26del Orta MM, Martín J, Santos JL, Aparicio I, Medina-Carrasco S, Alonso E. Biopolymer-clay nanocomposites as novel and ecofriendly adsorbents for environmental remediation. Appl Clay Sci. 2020; 198:105838. doi:10.1016/j.clay.2020.105838
- 27Shaari N, Kamarudin SK. Chitosan and alginate types of bio-membrane in fuel cell application: an overview. J Power Sources. 2015; 289: 71-80. doi:10.1016/j.jpowsour.2015.04.027
- 28Listiarini K, Chun W, Sun DD, Leckie JO. Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes. J Memb Sci. 2009; 344(1): 244-251. doi:10.1016/j.memsci.2009.08.010
- 29Shaari N, Kamarudin SK. Performance of crosslinked sodium alginate/sulfonated graphene oxide as polymer electrolyte membrane in DMFC application: RSM optimization approach. Int J Hydrogen Energy. 2018; 43: 22986-23003. doi:10.1016/j.ijhydene.2018.10.098
- 30Musa MT, Shaari N, Kamarudin SK. Carbon nanotube, graphene oxide and montmorillonite as conductive fillers in polymer electrolyte membrane for fuel cell: an overview. Int J Energy Res. 2020; 45: 1309-1346. doi:10.1002/er.5874
- 31Sun S, Sun S, Cao X, Sun R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol. 2016; 199: 49-58. doi:10.1016/j.biortech.2015.08.061
- 32Siro I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellul. 2010; 17: 459-494. doi:10.1007/s10570-010-9405-y
- 33Bano S, Negi YS, Illathvalappil R, Kurungot S, Ramya K. Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes. Electrochim Acta. 2019; 293: 260-272. doi:10.1016/j.electacta.2018.10.029
- 34Klemm D, Cranston ED, Fischer D, et al. Nanocellulose as a natural source for groundbreaking applications in materials science: Today's state. Mater Today. 2018; 21(7): 720-748. doi:10.1016/j.mattod.2018.02.001
- 35Thomas B, Raj MC, Joy J, Moores A, Drisko GL, Sanchez C. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev. 2018; 118(24): 11575-11625. doi:10.1021/acs.chemrev.7b00627
- 36Wang J, Tavakoli J, Tang Y. Bacterial cellulose production, properties and applications with different culture methods - a review. Carbohydr Polym. 2019; 219: 63-76. doi:10.1016/j.carbpol.2019.05.008
- 37Christwardana M, Handayani AS, Yudianti R. Cellulose – carrageenan coated carbon felt as potential anode structure for yeast microbial fuel cell. Int J Hydrogen Energy. 2020; 46: 6076-6086. doi:10.1016/j.ijhydene.2020.05.265
- 38Islam S, Bhuiyan MAR, Islam MN. Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ. 2017; 25(3): 854-866. doi:10.1007/s10924-016-0865-5
- 39Aranaz I, Mengíbar M, Harris R. Functional characterization of chitin and chitosan. Curr Chem Bio. 2009; 3: 203-230.
- 40Boopathi G, Pugalendhi S, Selvasekarapandian S, Premalatha M, Monisha S, Aristatil G. Development of proton conducting biopolymer membrane based on agar–agar for fuel cell. Ionics (Kiel). 2017; 23(10): 2781-2790. doi:10.1007/s11581-016-1876-x
- 41Ranjani M, Pannipara M, Al-Sehemi AG, Vignesh A, Kumar GG. Chitosan/sulfonated graphene oxide/silica nanocomposite membranes for direct methanol fuel cells. Solid State Ion. 2019; 338: 153-160. doi:10.1016/j.ssi.2019.05.010
- 42Ma J, Sahai Y. Chitosan biopolymer for fuel cell applications. Carbohydr Polym. 2013; 92(2): 955-975. doi:10.1016/j.carbpol.2012.10.015
- 43Shanmuga Priya S, Karthika M, Selvasekarapandian S, Manjuladevi R, Monisha S. Study of biopolymer I-carrageenan with magnesium perchlorate. Ionics (Kiel). 2018; 24(12): 3861-3875. doi:10.1007/s11581-018-2535-1
- 44Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G. Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non Cryst Solids. 2018; 481: 424-434. doi:10.1016/j.jnoncrysol.2017.11.027
- 45Koller M. Microbial biopolyester production, performance and processing bioengineering, characterization, and sustainability. Vol 2. Sharjah: Bentham Science Publishers; 2016.
- 46Ciesielski S, Pokoj T, Klimiuk E. Cultivation-dependent and -independent characterization of microbial community producing polyhydroxyalkanoates from raw-glycerol. J Microbiol Biotechnol. 2010; 20(5): 853-861. doi:10.4014/jmb.0909.09038
- 47Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol. 2016; 89: 161-174. doi:10.1016/j.ijbiomac.2016.04.069
- 48Halevas EG, Pantazaki AA. Polyhydroxyalkanoates: chemical structure. Polyhydroxyalkanoates: Biosynthesis, chemical structures and applications. Hauppauge: Nova Science Publishers, Inc; 2018: 133-150.
- 49George A, Sanjay MR, Sriusk R, Parameswaranpillai J, Siengchin S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol. 2020; 154: 329-338. doi:10.1016/j.ijbiomac.2020.03.120
- 50Banu JR, Kumar MD, Gunasekaran M, Kumar G. Biopolymer production in bio electrochemical system: literature survey. Bioresour Technol Reports. 2019; 7:100283. doi:10.1016/j.biteb.2019.100283
10.1016/j.biteb.2019.100283 Google Scholar
- 51Chanchal A, Vohra R, Elesela S, et al. Gelatin biopolymer: a journey from micro to nano gelatin biopo- lymer: a journey from micro to nano. J Pharm Res. 2014; 8(10): 1387-1397.
- 52Morgan-Sagastume F, Valentino F, Hjort M, et al. Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment. Water Sci Technol. 2014; 69(1): 177-184.
- 53Othman SH. Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia. 2014; 2: 296-303.
- 54Uragami T. Separation from chitin and chitosan derivatives. In SK Kim (ed), Chitin, Chitosan, Oligosaccharides and their Derivatives. London, UK: CRC Press; 2016: 481-506.
- 55Agostini de Moraes M, Cocenza DS, da Cruz Vasconcellos F, Fraceto LF, Beppu MM. Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides. J Environ Manage. 2013; 131: 222-227. doi:10.1016/j.jenvman.2013.09.028
- 56Bigman LS, Levy Y. Protein diffusion on charged biopolymers: DNA versus microtubule. Biophys J. 2020; 118: 1-29. doi:10.1016/j.bpj.2020.05.004
- 57Adeyeye OA, Sadiku ER, Babu RA, et al. The use of biopolymers in food packaging. Singapore: Springer; 2019.
10.1007/978-981-13-8063-1_6 Google Scholar
- 58Thakur VK, Voicu SI. Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym. 2016; 146: 148-165. doi:10.1016/j.carbpol.2016.03.030
- 59Smitha B, Sridhar S, Khan AA. Chitosan-sodium alginate polyion complexes as fuel cell membranes. Eur Polym J. 2005; 41(8): 1859-1866. doi:10.1016/j.eurpolymj.2005.02.018
- 60Raeis-Hosseini N, Park Y, Lee J. Flexible artificial synaptic devices based on collagen from fish protein with spike-timing-dependent plasticity. Adv Funct Mater. 2018; 28(31): 1800553. doi:10.1002/adfm.201800553
- 61Ko J, Nguyen LTH, Surendran A, Tan BY, Ng KW, Leong WL. Human hair keratin for biocompatible flexible and transient electronic devices. ACS Appl Mater Interfaces. 2017; 9(49): 43004-43012. doi:10.1021/acsami.7b16330
- 62Sriamornsak P, Kennedy RA. Swelling and diffusion studies of calcium polysaccharide gels intended for film coating. Int J Pharm. 2008; 358(1): 205-213. doi:10.1016/j.ijpharm.2008.03.009
- 63Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M. Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym. 2016; 137: 360-374. doi:10.1016/j.carbpol.2015.10.074
- 64Huang X, Luo X, Liu L, et al. Formation mechanism of egg white protein/κ-carrageenan composite film and its application to oil packaging. Food Hydrocoll. 2020; 105:105780. doi:10.1016/j.foodhyd.2020.105780
- 65Kassab Z, Aziz F, Hannache H, Ben Youcef H, El Achaby M. Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals. Int J Biol Macromol. 2019; 123: 1248-1256. doi:10.1016/j.ijbiomac.2018.12.030
- 66Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Hemalatha R, Boopathi G. Synthesis and characterization of bio-polymer electrolyte based on iota-carrageenan with ammonium thiocyanate and its applications. J. Solid State Electrochem. 2018; 22(10): 3209-3223. doi:10.1007/s10008-018-4028-6
- 67Ab NF, Rahman LK, Shyuan ABM, Kadhum AAH. Review on biopolymer membranes for fuel cell applications. Appl Mech Mater. 2013; 291–294: 614-617. doi:10.4028/scientific.net/AMM.291-294.614
10.4028/www.scientific.net/AMM.291-294.614 Google Scholar
- 68Mohy Eldin MS, Farag HA, Tamer TM, Konsowa AH, Gouda MH. Development of novel iota carrageenan-g-polyvinyl alcohol polyelectrolyte membranes for direct methanol fuel cell application. Polym Bull. 2020; 77(9): 4895-4916. doi:10.1007/s00289-019-02995-6
- 69Campo VL, Kawano DF, da Silva DB, Carvalho I. Carrageenans: biological properties, chemical modifications and structural analysis – a review. Carbohydr Polym. 2009; 77(2): 167-180. doi:10.1016/j.carbpol.2009.01.020
- 70Sánchez-García MD, Hilliou L, Lagarón JM. Morphology and water barrier properties of Nanobiocomposites of κ/ι-hybrid carrageenan and cellulose Nanowhiskers. J Agric Food Chem. 2010; 58: 12847-12857. doi:10.1021/jf102764e
- 71Isa M. I. N., Noor N. A. M. Conductivity and electrical studies of plasticized carboxymethyl cellulose based proton conducting solid biopolymer electrolytes. In Proc SPIE, Micro + Nano Materials. 2015: 9668, doi: 10.1117/12.2202527
- 72Kamarudin KH, Isa MIN. Structural and DC ionic conductivity studies of carboxy methylcellulose doped with ammonium nitrate as solid polymer electrolytes. Int J Phys Sci. 2013; 8(31): 1581-1587. doi:10.5897/IJPS2013.3962
- 73Monisha S, Mathavan T, Selvasekarapandian S, et al. Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym. 2017; 157: 38-47. doi:10.1016/j.carbpol.2016.09.026
- 74Selvalakshmi S, Vijaya N, Selvasekarapandian S, Premalatha M. Biopolymer agar-agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application. J Appl Polym Sci. 2017; 134(15). doi:10.1002/app.44702
- 75Premalatha M, Mathavan T, Selvasekarapandian S, Monisha S, Pandi DV, Selvalakshmi S. Investigations on proton conducting biopolymer membranes based on tamarind seed polysaccharide incorporated with ammonium thiocyanate. J Non Cryst Solids. 2016; 453: 131-140. doi:10.1016/j.jnoncrysol.2016.10.008
- 76Boriboon D, Vongsetskul T, Limthongkul P, Kobsiriphat W, Tammawat P. Cellulose ultrafine fibers embedded with titania particles as a high performance and eco-friendly separator for lithium-ion batteries. Carbohydr Polym. 2018; 189: 145-151. doi:10.1016/j.carbpol.2018.01.077
- 77Zhang L, Liu Z, Cui G, Chen L. Biomass-derived materials for electrochemical energy storages. Prog Polym Sci. 2015; 43: 136-164. doi:10.1016/j.progpolymsci.2014.09.003
- 78Cao C, Tan L, Liu W, Ma J, Li L. Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries. J Power Sources. 2014; 248: 224-229. doi:10.1016/j.jpowsour.2013.09.027
- 79Zhang J, Liu Z, Kong Q, et al. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces. 2013; 5: 128-134. doi:10.1021/am302290n
- 80Zhang H, Wang X, Liang Y. Preparation and characterization of a Lithium-ion battery separator from cellulose nanofibers. Heliyon. 2015; 1(2):e00032. doi:10.1016/j.heliyon.2015.e00032
- 81Jiang F, Yin L, Yu Q, Zhong C, Zhang J. Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sources. 2015; 279: 21-27. doi:10.1016/j.jpowsour.2014.12.090
- 82Cai Z, Li R, Xu X, et al. Embedding phosphoric acid-doped cellulose nanofibers into sulfonated poly (ether sulfone) for proton exchange membrane. Polymer (Guildf). 2018; 156: 179-185. doi:10.1016/j.polymer.2018.10.013
- 83Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011; 40: 3941. doi:10.1039/c0cs00108b
- 84Kurita K. Controlled functionalization of the polysaccharide chitin. Prog Polym Sci. 2001; 26(9): 1921-1971. doi:10.1016/S0079-6700(01)00007-7
- 85Hu Y, Tsen WC, Chuang FS, et al. Glycine betaine intercalated layered double hydroxide modified quaternized chitosan/polyvinyl alcohol composite membranes for alkaline direct methanol fuel cells. Carbohydr Polym. 2019; 213: 320-328. doi:10.1016/j.carbpol.2018.12.059
- 86Nowacki K, Galiński M, Stępniak I. Synthesis and characterization of modified chitosan membranes for applications in electrochemical capacitor. Electrochim Acta. 2019; 320: 134632. doi:10.1016/j.electacta.2019.134632
- 87Yousefi V, Mohebbi-Kalhori D, Samimi A. Start-up investigation of the self-assembled chitosan/montmorillonite nanocomposite over the ceramic support as a low-cost membrane for microbial fuel cell application. Int J Hydrogen Energy. 2020; 45(7): 4804-4820. doi:10.1016/j.ijhydene.2019.11.216
- 88Możejko-Ciesielska J, Kiewisz R. Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res. 2016; 192(2016): 271-282. doi:10.1016/j.micres.2016.07.010
- 89Raza ZA, Abid S, Banat IM. Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegrad. 2018; 126: 45-56. doi:10.1016/j.ibiod.2017.10.001
- 90Leong YK, Show PL, Lan JC-W, Loh H-S, Lam HL, Ling TC. Economic and environmental analysis of PHAs production process. Clean Technol Environ Policy. 2017; 19(7): 1941-1953.
- 91Villano M, Valentino F, Barbetta A, Martino L, Scandola M, Majone M. Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process. N Biotechnol. 2014; 31(4): 289-296. doi:10.1016/j.nbt.2013.08.001
- 92Ivanov V, Stabnikov V, Ahmed Z, Dobrenko S, Saliuk A. Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste. Int J Environ Sci Technol. 2015; 12(2): 725-738. doi:10.1007/s13762-014-0505-3
- 93Reddy CSK, Ghai R, Kalia VC. Polyhydroxyalkanoates: an overview. Bioresour Technol. 2003; 87(2): 137-146.
- 94Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000; 25(10): 1503-1555.
- 95Li Y, He G, Wang S, et al. Recent advances in the fabrication of advanced composite membranes. J Mater Chem A. 2013; 1(35): 10058-10077.
- 96Kim DS, Dhand V, Rhee KY, Park S-J. Study on the effect of silanization and improvement in the tensile behavior of graphene-chitosan-composite. Polymers (Basel). 2015; 7(3): 527-551.
- 97Roy S, Singha NR. Polymeric nanocomposite membranes for next generation pervaporation process: strategies, challenges and future prospects. Membranes (Basel). 2017; 7(3): 53.
- 98Shaari N. Impact of Quaternization and polymer blending on the properties of sodium alginate membrane for DMFC application. 2020.
- 99Xiang Y, Yang M, Guo Z, Cui Z. Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. J Memb Sci. 2009; 337(1–2): 318-323.
- 100Kim M-J, Park JW, Kim BG, et al. Facile fabrication of solution-processed solid-electrolytes for high-energy-density all-solid-state-batteries by enhanced interfacial contact. Sci Rep. 2020; 10(1): 1-11.
- 101Mustapha S, Ndamitso MM, Abdulkareem AS, et al. Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Appl Water Sci. 2020; 10(1): 1-36.
- 102Junoh H, Jaafar J, Nordin N, et al. Performance of polymer electrolyte membrane for direct methanol fuel cell application: perspective on morphological structure. Membranes (Basel). 2020; 10:1-21. doi:10.3390/membranes10030034
- 103Muhmed SA, Nor NAM, Jaafar J, et al. Emerging chitosan and cellulose green materials for ion exchange membrane fuel cell: a review. Energy, Ecol Environ. 2020; 5(2): 85-107. doi:10.1007/s40974-019-00127-4
10.1007/s40974-019-00127-4 Google Scholar
- 104Kim DJ, Hwang HY, Nam SY. Characterization of sulfonated poly (arylene ether sulfone)(SPAES)/silica- phosphate sol-gel composite membrane: effects of the sol-gel composition. Macromol Res. 2013; 21: 1194-1200. doi:10.1007/s13233-013-1162-y
- 105Wang Y, Yang D, Zheng X, Jiang Z, Li J. Zeolite beta-filled chitosan membrane with low methanol permeability for direct methanol fuel cell. J Power Sources. 2008; 183(2): 454-463. doi:10.1016/j.jpowsour.2008.06.003
- 106Wang J, Zheng X, Wu H, et al. Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell. J Power Sources. 2008; 178(1): 9-19. doi:10.1016/j.jpowsour.2007.12.063
- 107Aricò AS, Baglio V, Antonucci V. Direct methanol fuel cells: history, status and perspectives. Electr Direct Methan Fuel Cells. 2009; 1-78.
- 108Prasad M, Mohanty S, Nayak SK. Polymer electrolyte membranes from Cloisite 30B-based solid proton conductor and sulfonated polyether ether ketone/polyvinylidene fluoride-co-hexafluoro propylene blends for direct methanol fuel cells. RSC Adv. 2014; 4(105): 61178-61186.
- 109Bagheri A, Javanbakht M, Beydaghi H, Salarizadeh P, Shabanikia A, Amoli HS. Sulfonated poly (etheretherketone) and sulfonated polyvinylidene fluoride-co-hexafluoropropylene based blend proton exchange membranes for direct methanol fuel cell applications. RSC Adv. 2016; 6(45): 39500-39510.
- 110Marangoni Júnior L, da Silva RG, Anjos CAR, Vieira RP, Alves RMV. Effect of low concentrations of SiO2 nanoparticles on the physical and chemical properties of sodium alginate-based films. Carbohydr Polym. 2021; 269: 118286. doi:10.1016/J.CARBPOL.2021.118286
- 111Li R, Lou Y, Xu Y, et al. Effects of surface morphology on alginate adhesion: molecular insights into membrane fouling based on XDLVO and DFT analysis. Chemosphere. 2019; 233: 373-380. doi:10.1016/j.chemosphere.2019.05.262
- 112Karimi Khorrami N, Radi M, Amiri S, McClements DJ. Fabrication and characterization of alginate-based films functionalized with nanostructured lipid carriers. Int J Biol Macromol. 2021; 182: 373-384. doi:10.1016/j.ijbiomac.2021.03.159
- 113Dodero A, Donati I, Scarfì S, et al. Effect of sodium alginate molecular structure on electrospun membrane cell adhesion. Mater Sci Eng C. 2021; 124:112067. doi:10.1016/j.msec.2021.112067
- 114Pan J, Li Y, Chen K, Zhang Y, Zhang H. Enhanced physical and antimicrobial properties of alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking. Carbohydr Polym. 2021; 266:118102. doi:10.1016/j.carbpol.2021.118102
- 115Jurić S, Šegota S, Vinceković M. Influence of surface morphology and structure of alginate microparticles on the bioactive agents release behavior. Carbohydr Polym. 2019; 218: 234-242. doi:10.1016/j.carbpol.2019.04.096
- 116Lutfi Z, Kalim Q, Shahid A, Nawab A. Water chestnut, rice, corn starches and sodium alginate. A comparative study on the physicochemical, thermal and morphological characteristics of starches after dry heating. Int J Biol Macromol. 2021; 184: 476-482. doi:10.1016/j.ijbiomac.2021.06.128
- 117Ma J, Jiang Z, Cao J, Yu F. Enhanced adsorption for the removal of antibiotics by carbon nanotubes/graphene oxide/sodium alginate triple-network nanocomposite hydrogels in aqueous solutions. Chemosphere. 2020; 242:125188. doi:10.1016/j.chemosphere.2019.125188
- 118Samoila P, Grecu I, Asandulesa M, Cojocaru C, Harabagiu V. Bio-based ionically cross-linked alginate composites for PEMFC potential applications. React Funct Polym. 2021; 165:104967. doi:10.1016/j.reactfunctpolym.2021.104967
- 119Yuan Y, Xu X, Gong J, et al. Fabrication of chitosan-coated konjac glucomannan/sodium alginate/graphene oxide microspheres with enhanced colon-targeted delivery. Int J Biol Macromol. 2019; 131: 209-217. doi:10.1016/j.ijbiomac.2019.03.061
- 120Munavalli B, Torvi A, Kariduraganavar M. A facile route for the preparation of proton exchange membranes using sulfonated side chain graphite oxides and crosslinked sodium alginate for fuel cell. Polymer (Guildf). 2018; 142: 293-309. doi:10.1016/j.polymer.2018.03.044
- 121Jiang Z, Shi Y, Jiang Z-J, Tian X, Luoa L, Chena W. High performance of a free-standing sulfonic acid functionalized holey graphene oxide paper as a proton conducting polymer electrolyte for air-breathing direct methanol fuel cells. J Mater Chem A. 2014; 2: 6494-6503. doi:10.1039/c4ta00208c
- 122Fuzlin AF, Samsudin AS. Studies on favorable ionic conduction and structural properties of biopolymer electrolytes system-based alginate. Polym. Bull. 2021; 78(4): 2155-2175. doi:10.1007/s00289-020-03207-2
- 123Mallakpour S, Azadi E, Hussain CM. State-of-the-art of 3D printing technology of alginate-based hydrogels—an emerging technique for industrial applications. Adv Colloid Interface Sci. 2021; 293:102436. doi:10.1016/j.cis.2021.102436
- 124Shankar S, Kasapis S, Rhim J-W. Alginate-based nanocomposite films reinforced with halloysite nanotubes functionalized by alkali treatment and zinc oxide nanoparticles. Int J Biol Macromol. 2018; 118: 1824-1832. doi:10.1016/j.ijbiomac.2018.07.026
- 125Gong X, Dang G, Guo J, Liu Y, Gong Y. A sodium alginate / feather keratin composite fi ber with skin-core structure as the carrier for sustained drug release. Int J Biol Macromol. 2020; 155: 386-392. doi:10.1016/j.ijbiomac.2020.03.224
- 126Zhang R, Guo J, Wu J, Zhao M, Liu Y, Yu Y. Preparation, characterization and properties of high-salt-tolerance sodium alginate/krill protein composite fibers. Fibers Polym. 2018; 19(5): 1074-1083.
- 127Pambudi AB, Priyangga A, Hartanto D, Atmaja L. Fabrication and characterization of modified microcrystalline cellulose membrane as proton exchange membrane for direct methanol fuel cell. Mater Today Proc. 2021; 2020: 1-5. doi:10.1016/j.matpr.2021.01.431
10.1016/j.matpr.2021.01.431 Google Scholar
- 128Pang J, Wu M, Zhang QH, et al. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr Polym. 2015; 121: 71-78. doi:10.1016/j.carbpol.2014.11.067
- 129Cui Z, Liu C, Lu T, Xing W. Polyelectrolyte complexes of chitosan and phosphotungstic acid as proton-conducting membranes for direct methanol fuel cells. J Power Sources. 2007; 167(1): 94-99. doi:10.1016/j.jpowsour.2006.12.112
- 130Sedayu BB, Cran MJ, Bigger SW. A review of property enhancement techniques for carrageenan-based films and coatings. Carbohydr Polym. 2019; 216: 287-302. doi:10.1016/j.carbpol.2019.04.021
- 131Arof AK, Shuhaimi NEA, Alias NA, Kufian MZ, Majid SR. Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). J Solid State Electrochem. 2010; 14(12): 2145-2152. doi:10.1007/s10008-010-1050-8
- 132Prasad K, Kadokawa J. Preparation of composite materials composed of i-carrageenan and polymeric ionic liquids. Polym Polym Compos. 2010; 16(2): 101-113. doi:10.1002/pc
10.1002/pc Google Scholar
- 133Kalaiselvimary J, Sundararajan M, Prabhu MR. Preparation and characterization of chitosan-based nanocomposite hybrid polymer electrolyte membranes for fuel cell application. Ionics (Kiel). 2018; 24(11): 3555-3571. doi:10.1007/s11581-018-2485-7
- 134Alves Lopes I, Coelho Paixão L, Souza da Silva LJ, Almeida Rocha A, Allan AK, Amorim Santana A. Elaboration and characterization of biopolymer films with alginate and babassu coconut mesocarp. Carbohydr Polym. 2020; 234:115747. doi:10.1016/j.carbpol.2019.115747
- 135Gholamian S, Nourani M, Bakhshi N. Formation and characterization of calcium alginate hydrogel beads filled with cumin seeds essential oil. Food Chem. 2021; 338: 128-143. doi:10.1016/j.foodchem.2020.128143
- 136Vilela C, Silva ACQ, Domingues EM, et al. Conductive polysaccharides-based proton-exchange membranes for fuel cell applications: the case of bacterial cellulose and fucoidan. Carbohydr Polym. 2020; 230: 115604. doi:10.1016/j.carbpol.2019.115604
- 137Foster J, Moon RJ, Agarwal UP, et al. Current characterization methods for cellulose nanomaterials. Chem Soc Rev. 2018; 47(8): 2609-2679. 10.1039/C6CS00895J
- 138Chandesris M, Vincent R, Guetaz L, Roch J-S, Thoby D, Quinaud M. Membrane degradation in PEM fuel cells: From experimental results to semi-empirical degradation laws. Int J Hydrogen Energy. 2017; 42: 1-11. doi:10.1016/j.ijhydene.2017.02.116
- 139Savadekar NR, Karande VS, Vigneshwaran N, Bharimalla AK, Mhaske ST. Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. Int J Biol Macromol. 2012; 51(5): 1008-1013. doi:10.1016/j.ijbiomac.2012.08.014
- 140Zakuwan SZ, Ahmad I, Ramli N. Preparation of hybrid Nano biocomposite κ -carrageenan/cellulose nanocrystal/ Nanoclay. The 2013 UKM FST Postgraduate Colloquium. 2013; 743: 738-743. doi:10.1063/1.4858742
10.1063/1.4858742 Google Scholar
- 141Chen Y, Liu C, Chang PR, Cao X, Anderson DP. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym. 2009; 76(4): 607-615. doi:10.1016/j.carbpol.2008.11.030
- 142Blumstein A. Polymerization of adsorbed Monolayeres. II. Thermal degradation of the inserted polymer*. J Polym Sci. 1964; 3: 2665-2672.
- 143Almasi H, Ghanbarzadeh B, Entezami AA. Physicochemical properties of starch – CMC – nanoclay biodegradable films. Int J Biol Macromol. 2010; 46: 1-5. doi:10.1016/j.ijbiomac.2009.10.001
- 144Lee J-E, Kim KM. Characteristics of soy protein isolate-montmorillonite composite films. J Appl Polym Sci. 2010; 118: 4-6. doi:10.1002/app
- 145Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. 2000; 28: 1-63.
- 146Wu SY, Hsiao IC, Liu CM, Mt Yusuf NY, Wan Isahak WNR, Masdar MS. A novel bio-cellulose membrane and modified adsorption approach in CO2/H2 separation technique for PEM fuel cell applications. Int J Hydrogen Energy. 2017; 42(45): 27630-27640. doi:10.1016/j.ijhydene.2017.05.148
- 147Becker H, Locascio LE. Polymer microfluidic devices. Talanta. 2002; 56(2): 267-287. doi:10.1016/S0039-9140(01)00594-X
- 148Ebnesajjad S. Introduction to plastics. Chemical resistance of commodity thermoplastics. Wuhan, China: Plastics Design Library; 2016: xiii-xxv.
- 149Wong CY, Wong WY, Liu L, Shibutani Y, Loh KS. Molecular dynamic simulation approach to understand the physical and proton transport properties of chitosan/sulfonated poly(vinyl alcohol) composite membranes. Polymer (Guildf). 2021; 217:123458. doi:10.1016/j.polymer.2021.123458
- 150Singh R, Gautam S, Sharma B, Jain P, Chauhan KD. Biopolymers and their classifications. Amsterdam: Elsevier Inc.; 2021.
10.1016/B978-0-12-819240-5.00002-X Google Scholar
- 151Ni C, Wei Y, Hu Q, et al. Nanocrystalline cellulose reinforced sulfonated fl uorenyl-containing polyaryletherketones for proton exchange membranes. Solid State Ion. 2016; 297: 29-35. doi:10.1016/j.ssi.2016.09.027
- 152Wei Y, Shang Y, Ni C, Zhang H, Li X, Liu B. Modified nanocrystal cellulose / fluorene-containing sulfonated poly (ether ether ketone ketone) composites for proton exchange membranes. Appl Surf Sci. 2017; 416: 996-1006. doi:10.1016/j.apsusc.2017.04.190
- 153Muhmed SA, Jaafar J, Daud SS, et al. Improvement in properties of nanocrystalline cellulose/poly (vinylidene fluoride) nanocomposite membrane for direct methanol fuel cell application. J Environ Chem Eng. 2021; 9(4):105577. doi:10.1016/j.jece.2021.105577
- 154Bai H, Li Y, Zhang H, et al. Anhydrous proton exchange membranes comprising of chitosan and phosphorylated graphene oxide for elevated temperature fuel cells. J. Memb. Sci. 2015; 495: 48-60. doi:10.1016/j.memsci.2015.08.012
- 155Malev VV, Rusanov AI. Thermodynamics, mechanical and electrical properties of biomembranes. J Theor Biol. 1989; 136(3): 295-307. doi:10.1016/S0022-5193(89)80165-1
- 156Xu X, Zhao G, Wang H, et al. Bio-inspired amino-acid-functionalized cellulose whiskers incorporated into sulfonated polysulfone for proton exchange membrane. J Power Sources. 2019; 409: 123-131. doi:10.1016/j.jpowsour.2018.11.003
- 157Gadim TDO, Loureiro FJA, Vilela C, et al. Protonic conductivity and fuel cell tests of nanocomposite membranes based on bacterial cellulose. Electrochim Acta. 2017; 233: 52-61. doi:10.1016/j.electacta.2017.02.145
- 158Jost V, Stramm C. Influence of plasticizers on the mechanical and barrier properties of cast biopolymer films. J Appl Polym Sci. 2015; 133(2): 42513. doi:10.1002/app.42971
- 159Yi YD, Bae YC. Swelling behaviors of proton exchange membranes in alcohols. Polymer (Guildf). 2017; 130: 112-123. doi:10.1016/j.polymer.2017.09.069
- 160Ni C, Wang H, Zhao Q, Liu B, Sun Z, Zhang M. Crosslinking effect in nanocrystalline cellulose reinforced sulfonated poly (aryl ether ketone) proton exchange membranes. Solid State Ion. 2018; 323: 5-15. doi:10.1016/j.ssi.2018.05.004
- 161Santamaria M, Pecoraro CM, Di Franco F, Di Quarto F. Phosphomolybdic acid and mixed phosphotungstic/phosphomolybdic acid chitosan membranes as polymer electrolyte for H2/O2 fuel cells. Int J Hydrogen Energy. 2017; 42(9): 6211-6219. doi:10.1016/j.ijhydene.2017.02.069
- 162Tohidian M, Ghaffarian SR, Shakeri SE, Dashtimoghadam E, Hasani-Sadrabadi MM. Organically modified montmorillonite and chitosan-phosphotungstic acid complex nanocomposites as high performance membranes for fuel cell applications. J. Solid State Electrochem. 2013; 17(8): 2123-2137. doi:10.1007/s10008-013-2074-7
- 163Liu Y, Wang J, Zhang H, et al. Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions. J Power Sources. 2014; 269: 898-911. doi:10.1016/j.jpowsour.2014.07.075
- 164Ali Q, Taweepreda W, Techato K. Preparation and characterization of polymer electrolyte membrane from chloroacetate chitosan/chitosan blended with epoxidized natural rubber. Polym Test. 2020; 82: 106294. doi:10.1016/j.polymertesting.2019.106294
- 165Kamjornsupamitr T, Sangthumchai T, Saejueng P, Sumranjit J, Hunt AJ, Budsombat S. Composite proton conducting membranes from chitosan, poly(vinyl alcohol) and sulfonic acid-functionalized silica nanoparticles. Int J Hydrogen Energy. 2021; 46(2): 2479-2490. doi:10.1016/j.ijhydene.2020.10.062
- 166Solanki JN, Mishra PS, Murthy ZVP. Enhanced performance of DMFC prepared by 10Cu/CeO2 catalyst and nanocomposite SPVA membranes with layer-by-layer coating of polyacrylic acid and chitosan. Int J Hydrogen Energy. 2017; 42(18): 13198-13208. doi:10.1016/j.ijhydene.2017.04.008
- 167Wu Q, Wang H, Lu S, Xu X, Liang D, Xiang Y. Novel methanol-blocking proton exchange membrane achieved via self-anchoring phosphotungstic acid into chitosan membrane with submicro-pores. J Memb Sci. 2016; 500: 203-210. doi:10.1016/j.memsci.2015.11.019
- 168Ahmed S, Cai Y, Ali M, Khanal S, Xu S. Preparation and performance of nanoparticle-reinforced chitosan proton-exchange membranes for fuel-cell applications. J Appl Polym Sci. 2019; 136(1): 1-7. doi:10.1002/app.46904
- 169Srinophakun P, Thanapimmetha A, Plangsri S, Vetchayakunchai S, Saisriyoot M. Application of modified chitosan membrane for microbial fuel cell: roles of proton carrier site and positive charge. J Clean Prod. 2017; 142: 1274-1282. doi:10.1016/j.jclepro.2016.06.153
- 170Rupiasih NN. Effects of electrolytes on ion transport in chitosan membranes. J Phys Conf Ser. 2016; 776(1):012045. doi:10.1088/1742-6596/776/1/012045
10.1088/1742-6596/776/1/012045 Google Scholar
- 171Shirdast A, Sharif A, Abdollahi M. Effect of the incorporation of sulfonated chitosan/sulfonated graphene oxide on the proton conductivity of chitosan membranes. J Power Sources. 2016; 306: 541-551. doi:10.1016/j.jpowsour.2015.12.076
- 172Khawdas W, Watanabe K, Karatani H, Aso Y, Tanaka T, Ohara H. Direct electron transfer of Cellulomonas fi mi and microbial fuel cells fueled by cellulose. J Biosci Bioeng. 2019; 128(5): 593-598. doi:10.1016/j.jbiosc.2019.05.001
- 173Choi P, Jalani NH, Thampan TM, Datta R. Phase equilibria and charge fractionation in polydisperse polyelectrolyte solutions. Wiley Intersci. 2004; 1: 1-3. doi:10.1002/polb
10.1002/polb Google Scholar
- 174Sirajudeen AAO, Annuar MSM, Subramaniam R. Composite of medium-chain-length polyhydroxyalkanoates-co-methyl acrylate and carbon nanotubes as innovative electrodes modifier in microbial fuel cell. Biotechnol Appl Biochem. 2020; 68: 1-12. doi:10.1002/bab.1928
- 175Ribeiro Lopes J, Azevedo dos Reis R, Almeida LE. Production and characterization of films containing poly(hydroxybutyrate) (PHB) blended with esterified alginate (ALG-e) and poly(ethylene glycol) (PEG). J Appl Polym Sci. 2017; 134(1): 1-10. doi:10.1002/app.44362
- 176Nitkiewicz T, Wojnarowska M, Sołtysik M, et al. How sustainable are biopolymers? Findings from a life cycle assessment of polyhydroxyalkanoate production from rapeseed-oil derivatives. Sci Total Environ. 2020; 749: 141279. doi:10.1016/j.scitotenv.2020.141279
- 177Shaari N, Kamarudin SK, Basri S, Shyuan LK, Masdar MS, Nordin D. Enhanced mechanical flexibility and performance of sodium alginate polymer electrolyte bio-membrane for application in direct methanol fuel cell. J Appl Polym Sci. 2018; 46666: 1-13. doi:10.1002/app.46666
- 178Yang JM, Wang NC, Chiu HC. Preparation and characterization of poly(vinyl alcohol)/sodium alginate blended membrane for alkaline solid polymer electrolytes membrane. J Memb Sci. 2014; 457: 139-148. doi:10.1016/j.memsci.2014.01.034
- 179Shaari N, Kamarudin SK, Basri S, Shyuan LK, Masdar MS, Nordin D. Enhanced proton conductivity and methanol permeability reduction via sodium alginate electrolyte-sulfonated graphene oxide bio-membrane. Nanoscale Res Lett. 2018; 13: 82.
- 180Shaari N, Kamarudin SK. Sodium alginate/alumina composite biomembrane preparation and performance in DMFC application. Polym. Test. 2020; 81:106183. doi:10.1016/j.polymertesting.2019.106183
- 181Shaari N, Kamarudin SK, Zakaria Z. Potential of sodium alginate/titanium oxide biomembrane nanocomposite in DMFC application. Int J Energy Res. 2019; 43(14): 8057-8069. doi:10.1002/er.4801