Identification of surrogate fluids for molten salt coolants used in energy systems applications including concentrated solar and nuclear power plants
Arturo Cabral
Department of Mechanical and Nuclear Engineering, Fluids in Advanced Systems and Technology Research Group, Virginia Commonwealth University, Richmond, Virginia, USA
Search for more papers by this authorCody S. Wiggins
Department of Mechanical and Nuclear Engineering, Fluids in Advanced Systems and Technology Research Group, Virginia Commonwealth University, Richmond, Virginia, USA
Search for more papers by this authorCorresponding Author
Lane B. Carasik
Department of Mechanical and Nuclear Engineering, Fluids in Advanced Systems and Technology Research Group, Virginia Commonwealth University, Richmond, Virginia, USA
Correspondence
Lane B. Carasik, Ph.D., Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, Fluids in Advanced Systems and Technology Research Group, 401 West Main Street, Box 843015, Richmond, VA 23284, USA.
Email: [email protected]
Search for more papers by this authorJoshua Fishler
Nuclear Science and Technology, Idaho National Laboratory, Idaho Falls, Idaho, USA
Search for more papers by this authorArturo Cabral
Department of Mechanical and Nuclear Engineering, Fluids in Advanced Systems and Technology Research Group, Virginia Commonwealth University, Richmond, Virginia, USA
Search for more papers by this authorCody S. Wiggins
Department of Mechanical and Nuclear Engineering, Fluids in Advanced Systems and Technology Research Group, Virginia Commonwealth University, Richmond, Virginia, USA
Search for more papers by this authorCorresponding Author
Lane B. Carasik
Department of Mechanical and Nuclear Engineering, Fluids in Advanced Systems and Technology Research Group, Virginia Commonwealth University, Richmond, Virginia, USA
Correspondence
Lane B. Carasik, Ph.D., Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, Fluids in Advanced Systems and Technology Research Group, 401 West Main Street, Box 843015, Richmond, VA 23284, USA.
Email: [email protected]
Search for more papers by this authorJoshua Fishler
Nuclear Science and Technology, Idaho National Laboratory, Idaho Falls, Idaho, USA
Search for more papers by this authorFunding information: Bank of America, Trustee; Thomas F. and Kate Miller Jeffress Memorial Trust; Jeffress Trust Award; Nuclear Regulatory Commission, Grant/Award Number: 31310018M0031
Summary
Molten salts are of great interest in the energy industry as coolants and heat transfer fluids due to their superior heat transfer properties and high operating temperatures. Due to these high temperatures and the corrosive properties of many molten salts, it can be difficult to perform fluid flow and heat transfer experiments of molten salt components in laboratory settings. Instead, surrogate fluids that operate at lower temperatures and match relevant dimensionless parameters of molten salts are suggested for such experiments. In this work, we examine two well-known surrogate fluids, water and Dowtherm A, and introduce two heat transfer fluids, Freezium 60 and Zitrec S-25, as candidate molten salt surrogates. We compare these fluids to common fluoride-, chloride-, and nitrate-based molten salts by considering temperature ranges over which their Prandtl numbers match. A model example at matched Prandtl and Reynolds number is used to determine the effects of using such surrogates on friction factor, pressure drop, Nusselt number, and pumping and heating power in a theorized experiment, and potential distortions based on Prandtl number mismatches are discussed. This article describes a distortion calculation methodology and quantifies the largest Prandtl number distortions encountered for various molten salt and surrogate pairs using a linearly scaled technique. Distortions between the fluids are seen to be small, but uncertainties in salt thermophysical properties motivate further research to understand the magnitude of such distortions and their subsequent effects on experimental outcomes.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors.
REFERENCES
- 1MacPherson HG. The molten salt reactor adventure. Nucl Sci Eng. 1985; 90: 374-380.
- 2Reilly HE, Kolb GJ. An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project, SAND2001-3674. United States: Sandia National Laboratories; 2001. https://www.osti.gov/biblio/791898
10.2172/791898 Google Scholar
- 3Pacheco JE. Incorporating Supercritical Steam Turbines into Advanced Molten-Salt Power Tower Plants: Feasibility and Peformance, SAND2013-1960. United States: Sandia National Laboratories; 2013. https://www.osti.gov/biblio/1088078
10.2172/1088078 Google Scholar
- 4Yu-ting W, Bin L, Chong-fang M, Hang G. Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube. Exp Thermal Fluid Sci. 2009; 33: 1128-1132. doi:10.1016/j.expthermflusci.2009.07.001
- 5Bin L, Yu-ting W, Chong-fang M, Meng Y, Hang G. Turbulent convective heat transfer with molten salt in a circular pipe. Int Commun Heat Mass Transfer. 2009; 36: 912-916. doi:10.1016/j.icheatmasstransfer.2009.06.003
- 6Hoffman HW, Cohen SI. Fueled Salt Heat Transfer Part III: Forced Convection Heat Transfer in Circular Tubes Containing the Salt Mixture NaNO2-NaNO3-KNO3, ORNL-2433. United States: Oak Ridge National Laboratory; 1960. https://www.osti.gov/biblio/4181833
- 7Hoffman HW, Lones J. Fueled Salt Heat Transfer Part II: Forced Convection Heat Transfer in Circular Tubes Containing NaF-KF-LiF Eutectic, ORNL-177. United States: Oak Ridge National Laboratory; 1955. https://www.osti.gov/biblio/4016896
10.2172/4016896 Google Scholar
- 8Colburn AP. A method of correlating forced convection heat transfer data and a comparison with fluid friction. Int J Heat Mass Transf. 1933; 7: 1359-1384. doi:10.1016/0017-9310(64)90125-5
10.1016/0017-9310(64)90125-5 Google Scholar
- 9Britsch K, Anderson M. A critical review of Flouride salt heat transfer. Nucl Technol. 2019; 206: 1625-1641. doi:10.1080/00295450.2019.1682418
- 10Bardet PM, Peterson PF. Options for scaled experiments for high temperature liquid salt and helium fluid mechanics and convective heat transfer. Nucl Technol. 2008; 163: 344-357. doi:10.13182/NT163-344
- 11Zweibaum N, Guo Z, Kendrick JC, Peterson PF. Design of the Compact Integral Effects Test Facility and Validation of best-estimate models for fluoride salt-cooled high temperature reactors. Nucl Technol. 2016; 196: 641-660. doi:10.13182/NT16-15
- 12Kedl RJ. Fluid Dynamic Studies of the Molten-Salt Reactor Experiment (MSRE) Core, ORNL-TM-3229. United States: Oak Ridge National Laboratory; 1970. https://www.osti.gov/biblio/4080377
10.2172/4080377 Google Scholar
- 13Zuber N. The effects of complexity, of simplicity and of scaling in thermal-hydraulics. Nucl Eng Des. 2001; 204: 1-27. doi:10.1016/S0029-5493(00)00324-1
- 14Bestion D, D'Auria F, Lien P, Nakamura H. A State-of-the-Art Report on Scaling in System Thermal-Hydraulics Applications to Nuclear Reactor Safety and Design. France: OECD Nuclear Energy Agency; 2016.
- 15Greif R, Zvirin Y, Mertol A. The transient and stability behavior of a natural convection loop. J Heat Transf. 1979; 101: 684-688. doi:10.1115/1.3451057
- 16Vijayan PK. Experimental observations on the general trends of the steady and stability behaviour of single-phase natural circulation loops. Nucl Eng Des. 2002; 215: 139-152. doi:10.1016/S0029-5493(02)00047-X
- 17Liu L, Peterson P, Zhang D, Johnson I, Qui S, Su GH. Scaling and distortion analysis using a simple natural circulation loop for FHR development. Appl Therm Eng. 2020; 168: 114849. doi:10.1016/j.applthermaleng.2019.114849.
- 18Haaland SE. Simple and explicit formulas for the friction factor in turbulent pipe flow. J Fluids Eng. 1983; 105: 89-90. doi:10.1115/1.3240948
- 19Dittus FW, Boelter LM. Heat transfer in automobile radiators of the tubular type. Int Comm Heat Mass Transfer. 1985; 12: 3-22. doi:10.1016/0735-1933(85)90003-X
- 20 Scaling Methodology for the Kairos Power Testing Program, KP-NRC-1903-001. United States: Kairos Power; 2019.
- 21Serrano-Lopez R, Fradera J, Cuesta-Lopez S. Molten salts database for energy applications. Chem Eng Process Process Intensif. 2013; 73: 87-102. doi:10.1016/j.cep.2013.07.008
- 22Magnusson J, Memmot M, Munro T. Review of thermophysical property methods applied to fueled and un-fueled molten salts. Ann Nucl Energy. 2020; 146. doi:10.1016/j.anucene.2020.107608
- 23Romatoski RR, Hu LW. Flouride salt coolant properties for nuclear reactor applications: a review. Ann Nucl Energy. 2017; 109: 635-647. doi:10.1016/j.anucene.2017.05.036
- 24Vignarooban K, Xinhai X, Arvay A, Hsu K, Kannan AM. Heat transfer fluids for concentrating solar power systems - a review. Appl Energy. 2015; 146: 383-396. doi:10.1016/j.apenergy.2015.01.125
- 25Cantor S. Density and viscosity of several molten fluoride mixtures. United States: Oak Ridge National Laboratory; 1973.
10.2172/4419855 Google Scholar
- 26D. F. Williams, L. M. Toth and K. T. Clarno, " Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor (AHTR) (ORNL/TM-2006/12)," United States: Oak Ridge National Laboratory; 2006. https://www.osti.gov/biblio/885975
10.2172/885975 Google Scholar
- 27Ward AT, Janz GJ. Molten carbonate electrolytes: electrical conductance, density and surface tension of binary and ternary mixtures. Electrochem Acta. 1965; 10: 849-857. doi:10.1016/0013-4686(65)80048-2
- 28Chrenková M, Daněk V, Vasiljev R, Silný A, Kremenetsky V, Polyakov E. Density and viscosity of the (LiF-NaF-KF)eut-KBF4-B2O3 melts. J Mol Liq. 2003; 102: 213-226. doi:10.1016/S0167-7322(02)00063-6
- 29Nissen DA. Thermophysical properties of the Equimolar mixture NaNo3-KNO3 from 300°C to 600°C. J Chem Eng Data. 1982; 27: 269-273. doi:10.1021/je00029a012
- 30Janz GJ, Gardner GL, Krebs U, Tomkins RPT. Molten salts: fluorides and mixtures electrical conductance, density, viscosity, and surface tension data. J Phys Chem Ref Data Monogr. 1974; 3(1): 1-115. doi:10.1063/1.3253134
- 31NREL, System Advisor Model. 2012.
- 32Williams DF. Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop. United States: Oak Ridge National Laboratory; 2006. https://www.osti.gov/biblio/1360677
10.2172/1360677 Google Scholar
- 33Koger JW. Corrosion and Mass Transfer Characteristics of NaBF4-NaF in Hastelloy N ORNL-TM-3866. United States: Oak Ridge National Laboratory; 1972. https://www.osti.gov/biblio/4602933
- 34Cantor S, Cooke JW, Dworkin AS, et al. Physical properties of molten-salt reactor fuel, coolant, and flush salts. United States: Oak Ridge National Laboratory; 1968. https://www.osti.gov/biblio/4492893
10.2172/4492893 Google Scholar
- 35Grimes WR, Blankenship FF, Keilholtz GW, Poppendiek HF, Robinson MT. Chemical Aspects of Molten Fluoride Reactors. United States: Oak Ridge National Lab; 1958. https://www.osti.gov/biblio/4305506
- 36Ejima T, Sato Y, Yamamura T, et al. Viscosity of the eutectic Li2CO3-Na2CO3-K2CO3 melt. Chem Eng Data. 1987; 32: 180-182. doi:10.1021/je00048a016
- 37Cohen SI, Jones TN. Viscosity measurements on molten fluoride mixtures. ORNL. 1957; 114: 1562-1564. https://www.osti.gov/biblio/4803933
- 38Yang Z, Garimella SV. Thermal analysis of solar thermal energy storage in a molten-salt thermocline. Sol Energy. 2010; 84: 974-985. doi:10.1016/j.solener.2010.03.007
- 39Grande T, Oye HA, Julsrud S. Viscosity and density of molten barium zirconate and related melts. J Non-Cryst Solids. 1993; 161: 152-156. doi:10.1016/0022-3093(93)90688-T
- 40Darienko SE, Raspopin SP, Chervisnki SP. Viscosity of melts of the reciprocal ternary system K, Zr//F. cl. Atomnaya Energiya. 1987; 62: 122-124.
- 41Beneš O, Konings RJM. Molten salt reactor fuel and coolant. Compr Nucl Mater. 2012; 3: 359-389. https://publications.jrc.ec.europa.eu/repository/handle/JRC64248
- 42An XH, Cheng JH, Su T, Zhang P. Determination of thermal physical properties of alkali fluoride/carbonate eutectic molten salt. AIP Conf Proc. 2017; 1850(1). doi:10.1063/1.4984415
10.1063/1.4984415 Google Scholar
- 43Janz GJ, Allen CB, Bansal NP, Murphy RM, Tomkins RPT. Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems. United States: 1979.
- 44Zavoico AB. Solar Power Tower Design Basis Document. United States: Sandia National Laboratories; 2001. doi:10.2172/786629
10.2172/786629 Google Scholar
- 45DiGuilio RM, Teja AS. A rough hard-sphere model for the thermal conductivity of molten salts. Int J Thermophys. 1992; 13: 855-871. doi:10.1007/BF00503912
- 46J. T. Hughes, Experimental and Computational Investigations of Heat Transfer Systems in Fluoride Salt-Cooled High-Temperature Reactors. United States: University of New Mexico; 2017. https://digitalrepository.unm.edu/ne_etds/60
- 47 Dowtherm A. Heat Transfer Fluid, Product Technical Data. United States: Dow Chemical Company; 1997.
- 48 NIST Chemistry WebBook. United States: National Institute of Standards and Technology, [Online] Available: https://webbook.nist.gov/chemistry/fluid/. Accessed 2020
- 49 V. e. V, ed. VDI Heat Atlas. Switzerland: Springer; 2010.ed.
10.1007/978-3-540-77877-6 Google Scholar