Electrodeposition as a facile way for the preparation of piezoelectric ultrathin silk film–based flexible nanogenerators
Lisa Sarkar
Electrical Engineering, Indian Institute of Technology, Hyderabad, India
Search for more papers by this authorBhavani Prasad Yelagala
Electrical Engineering, Indian Institute of Technology, Hyderabad, India
Search for more papers by this authorShiv Govind Singh
Electrical Engineering, Indian Institute of Technology, Hyderabad, India
Search for more papers by this authorCorresponding Author
Siva Rama Krishna Vanjari
Electrical Engineering, Indian Institute of Technology, Hyderabad, India
Correspondence
Siva Rama Krishna Vanjari, Electrical Engineering, Indian Institute of Technology, Hyderabad, India.
Email: [email protected]
Search for more papers by this authorLisa Sarkar
Electrical Engineering, Indian Institute of Technology, Hyderabad, India
Search for more papers by this authorBhavani Prasad Yelagala
Electrical Engineering, Indian Institute of Technology, Hyderabad, India
Search for more papers by this authorShiv Govind Singh
Electrical Engineering, Indian Institute of Technology, Hyderabad, India
Search for more papers by this authorCorresponding Author
Siva Rama Krishna Vanjari
Electrical Engineering, Indian Institute of Technology, Hyderabad, India
Correspondence
Siva Rama Krishna Vanjari, Electrical Engineering, Indian Institute of Technology, Hyderabad, India.
Email: [email protected]
Search for more papers by this authorSummary
This article demonstrates the use of the electrodeposition technique as a viable alternative for depositing uniform, ultra-smooth thin films of silk fibroin (SF). Herein, the electrodeposition of silk fibroin films from a homogeneous silk solution prepared by dissolving SF in formic acid (FA) solution is demonstrated. Ion electrodiffusion is used as the mechanism for the silk deposition. Optimizations were carried out to increase the β-sheet crystallinity, which in turn would enhance the inherent piezoelectric response of silk thin films, an exquisite property of silk that is seldom explored. The piezoelectric coefficient (d33) of electrodeposited silk thin film was experimentally figured out to be 8.39 pm/V. As a proof of concept, silk-based flexible nanogenerator was fabricated and tested successfully. Silk-based nanogenerator is able to produce a maximum open-circuit voltage of 1.02 V (peak–to-peak value) and short-circuit current of 0.8 mA at bending state. The device also exhibits good stability and reliability in terms of electrical outputs.
REFERENCES
- 1Zhu G, Yang R, Wang S, Wang ZL. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010; 10(8): 3151-3155.
- 2Lu MP, Song J, Lu MY, et al. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 2009; 9(3): 1223-1227.
- 3Yang R, Qin Y, Li C, Dai L, Wang ZL. Characteristics of output voltage and current of integrated nanogenerators. Appl Phys Lett. 2009; 94(2):22905.
- 4Chen X, Xu S, Yao N, Shi Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 2010; 10(6): 2133-2137.
- 5Park KI, Xu S, Liu Y, et al. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 2010; 10(12): 4939-4943.
- 6Jung JH, Chen CY, Yun BK, et al. Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology. 2012; 23(37):375401.
- 7Jung JH, Lee M, Hong JI, et al. Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano. 2011; 5(12):10041–10046.
- 8Lee JH, Lee KY, Gupta MK, et al. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv Mater. 2014; 26(5): 765-769.
- 9Singh HH, Singh S, Khare N. Enhanced β-phase in PVDF polymer nanocomposite and its application for nanogenerator. Polym Adv Technol. 2018; 29(1): 143-150.
- 10Abolhasani MM, Shirvanimoghaddam K, Naebe M. PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos Sci Technol. 2017; 138: 49-56.
- 11Huang T, Zhang Y, He P, et al. “Self-matched” Tribo/piezoelectric nanogenerators using vapor-induced phase-separated poly (vinylidene fluoride) and recombinant spider silk. Adv Mater. 2020; 32(10):1907336.
- 12Lee KY, Kim D, Lee JH, Kim TY, Gupta MK, Kim SW. Unidirectional high-power generation via stress-induced dipole alignment from ZnSnO3 nanocubes/polymer hybrid piezoelectric nanogenerator. Adv Funct Mater. 2014; 24(1): 37-43.
- 13Tao H, Kaplan DL, Omenetto FG. Silk materials–a road to sustainable high technology. Adv Mater. 2012; 24(21): 2824-2837.
- 14Zhu B, Wang H, Leow WR, et al. Silk fibroin for flexible electronic devices. Adv Mater. 2016; 28(22): 4250-4265.
- 15Jung MW, Myung S, Kim KW, et al. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method. Nanotechnology. 2014; 25(28):285302.
- 16Bettinger CJ, Cyr KM, Matsumoto A, Langer R, Borenstein JT, Kaplan DL. Silk fibroin microfluidic devices. Adv Mater. 2007; 19(19): 2847-2850.
- 17Yucel T, Lovett ML, Kaplan DL. Silk-based biomaterials for sustained drug delivery. J Control Release. 2014; 190: 381-397.
- 18Kim DH, Kim YS, Amsden J, et al. Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl Phys Lett. 2009; 95(13):133701.
- 19Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials. 2003; 24(3): 401-416.
- 20Meinel L, Betz O, Fajardo R, et al. Silk based biomaterials to heal critical sized femur defects. Bone. 2006; 39(4): 922-931.
- 21Li G, Li Y, Chen G, et al. Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv Healthc Mater. 2015; 4(8): 1134-1151.
- 22Kearns V, MacIntosh A, Crawford A, Hatton P. Silk-based biomaterials for tissue engineering. Top Tiss Eng. 2008; 4: 1-19.
- 23Kim KN, Chun J, Chae SA, et al. Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy. 2015; 14: 87-94.
- 24Zhang XS, Brugger J, Kim B. A silk-fibroin-based transparent triboelectric generator suitable for autonomous sensor network. Nano Energy. 2016; 20: 37-47.
- 25Harvey EN. The luminescence of adhesive tape. Science. 1939; 89(2316): 460-461.
- 26Fukada E. On the piezoelectric effect of silk fibers. J Physical Soc Japan. 1956; 11(12):1301A.
- 27Koh LD, Cheng Y, Teng CP, et al. Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci. 2015; 46: 86-110.
- 28Valluzzi R, Gido SP, Zhang W, Muller WS, Kaplan DL. Trigonal crystal structure of Bombyx mori silk incorporating a threefold helical chain conformation found at the air- water interface. Macromolecules. 1996; 29(27): 8606-8614.
- 29Demura M, Asakura T, Kuroo T. Immobilization of biocatalysts with Bombyx mori silk fibroin by several kinds of physical treatment and its application to glucose sensors. Biosensors. 1989; 4(6): 361-372.
- 30Sashina E, Novoselov N, Heinemann K. Dissolution of silk fibroin in N-methylmorpholine-N-oxide and its mixtures with organic solvents. Russ J Appl Chem. 2003; 76(1): 128-131.
- 31Liu Z, Zhang F, Ming J, Bie S, Li J, Zuo B. Preparation of electrospun silk fibroin nanofibers from solutions containing native silk fibrils. J Appl Polym Sci. 2015; 132(1): 1-7.
- 32Wang HY, Zhang YQ. Processing and characterisation of a novel electropolymerized silk fibroin hydrogel membrane. Sci Rep. 2014; 4(1): 1-11.
- 33Joseph J, Singh SG, Vanjari SRK. Leveraging innate piezoelectricity of ultra-smooth silk thin films for flexible and wearable sensor applications. IEEE Sens J. 2017; 17(24): 8306-8313.
- 34Yucel T, Kojic N, Leisk GG, Lo TJ, Kaplan DL. Non-equilibrium silk fibroin adhesives. J Struct Biol. 2010; 170(2): 406-412.
- 35Maniglio D, Bonani W, Bortoluzzi G, Servoli E, Motta A, Migliaresi C. Electrodeposition of silk fibroin on metal substrates. J Bioact Compat Polym. 2010; 25(5): 441-454.
- 36Elia R, Michelson CD, Perera AL, et al. Electrodeposited silk coatings for bone implants. J Biomed Mater Res B Appl Biomater. 2015; 103(8): 1602-1609.
- 37Elia R, Michelson CD, Perera AL, et al. Silk electrogel coatings for titanium dental implants. J Biomater Appl. 2015; 29(9): 1247-1255.
- 38Yucel T, Cebe P, Kaplan DL. Structural origins of silk piezoelectricity. Adv Funct Mater. 2011; 21(4): 779-785.
- 39Kojic N, Panzer MJ, Leisk GG, Raja WK, Kojic M, Kaplan DL. Ion electrodiffusion governs silk electrogelation. Soft Matter. 2012; 8(26): 6897-6905.
- 40Ha SW, Tonelli AE, Hudson SM. Structural studies of bombyx m ori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules. 2005; 6(3): 1722-1731.
- 41Pérez-Rigueiro J, Elices M, Llorca J, Viney C. Effect of degumming on the tensile properties of silkworm (Bombyx mori) silk fiber. J Appl Polym Sci. 2002; 84(7): 1431-1437.
- 42Wang L, Luo Z, Zhang Q, et al. Effect of degumming methods on the degradation behavior of silk fibroin biomaterials. Fibers Polym. 2019; 20(1): 45-50.
- 43Sah M, Pramanik K. Regenerated silk fibroin from B. mori silkcocoon for tissue engineering applications. Int J Environ Sci Dev. 2010; 1(5): 404.
10.7763/IJESD.2010.V1.78 Google Scholar
- 44Zhang F, Yang R, Zhang P, Qin J, Fan Z, Zuo B. Water-rinsed nonmulberry silk film for potential tissue engineering applications. ACS Omega. 2019; 4(2): 3114-3121.
- 45Mišković-Stanković VB. The mechanism of cathodic electrodeposition of epoxy coatings and the corrosion behaviour of the electrodeposited coatings. J Serb Chem Soc. 2002; 67(5): 305-324.
- 46Shen Y, Johnson MA, Martin DC. Microstructural characterization of Bombyx mori silk fibers. Macromolecules. 1998; 31(25): 8857-8864.
- 47Jung C. Insight into protein structure and protein–ligand recognition by Fourier transform infrared spectroscopy. J Mol Recognit. 2000; 13(6): 325-351.
10.1002/1099-1352(200011/12)13:6<325::AID-JMR507>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 48Dong A, Huang P, Caughey WS. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry. 1990; 29(13): 3303-3308.
- 49Hu X, Kaplan D, Cebe P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules. 2006; 39(18): 6161-6170.
- 50Tretinnikov ON, Tamada Y. Influence of casting temperature on the near-surface structure and wettability of cast silk fibroin films. Langmuir. 2001; 17(23): 7406-7413.
- 51Carey P. Molecular Biology: Biochemical Applications of Raman and Resonance Raman Spectroscopies. New York, NY: Academic Press; 1982.
- 52Lefevre T, Paquet-Mercier F, Rioux-Dubé JF, Pézolet M. Structure of silk by Raman spectromicroscopy: from the spinning glands to the fibers. Biopolymers. 2012; 97(6): 322-336.
- 53Wei QN, Huang AM, Ma L, et al. Structure regulation of silk fibroin films for controlled drug release. J Appl Polym Sci. 2012; 125(S2):E477–E484.
- 54Jaramillo-Quiceno N, Álvarez-López C, Restrepo-Osorio A. Structural and thermal properties of silk fibroin films obtained from cocoon and waste silk fibers as raw materials. Procedia Eng. 2017; 200: 384-388.
- 55Gil ES, Park SH, Marchant J, Omenetto F, Kaplan DL. Response of human corneal fibroblasts on silk film surface patterns. Macromol Biosci. 2010; 10(6): 664-673.
- 56Sencadas V, Garvey C, Mudie S, Kirkensgaard JJ, Gouadec G, Hauser S. Electroactive properties of electrospun silk fibroin for energy harvesting applications. Nano Energy. 2019; 66:104106.
- 57Li X, Han Y, An L. Surface morphology evolution of thin triblock copolymer films during spin coating. Langmuir. 2002; 18(13): 5293-5298.
- 58Ramakrishna S. An introduction to electrospinning and nanofibers. World scientific; 2005.
- 59Chang C, Tran VH, Wang J, Fuh YK, Lin L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010; 10(2): 726-731.