Ionic liquid-modified materials as polymer electrolyte membrane and electrocatalyst in fuel cell application: An update
Corresponding Author
Norazuwana Shaari
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Correspondence
Norazuwana Shaari, Fuel Cell Institute, Universiti Kebangsaan Malaysia, Selangor 43600, Bangi, Malaysia.
Email: [email protected]
Search for more papers by this authorNor Naimah Rosyadah Ahmad
Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Search for more papers by this authorRaihana Bahru
Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan, Bangi, Malaysia
Search for more papers by this authorChoe Peng Leo
School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
Search for more papers by this authorCorresponding Author
Norazuwana Shaari
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Correspondence
Norazuwana Shaari, Fuel Cell Institute, Universiti Kebangsaan Malaysia, Selangor 43600, Bangi, Malaysia.
Email: [email protected]
Search for more papers by this authorNor Naimah Rosyadah Ahmad
Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
Search for more papers by this authorRaihana Bahru
Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan, Bangi, Malaysia
Search for more papers by this authorChoe Peng Leo
School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
Search for more papers by this authorFunding information: Universiti Kebangsaan Malaysia, Grant/Award Number: DIP-2020-015
Summary
Ionic liquids (ILs) are promising solvents for catalytic and electrolyte applications, gas absorption, and extractions in electrochemical systems due to their useful features, such as high conductivity and good thermal, chemical, and electrical stability. This review focuses on incorporating ILs into fuel cell (FC) systems, specifically into two main components of FC (ie, polymer electrolyte membrane and electrocatalyst). In FC, a polymer electrolyte membrane with excellent conductivity and deprived of humidity even at high temperatures must be created for effective early commercialization of this technology. Electrocatalyst performance can also be enhanced with additive materials, such as ILs, thus further improving the entire achievement of FCs. This work discusses the most important reasons for ongoing studies and outlines the current progress in using ILs as a revolutionary form of polymer electrolyte membrane and electrocatalyst.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- 1Rana UA, Forsyth M, MacFarlane DR, Pringle JM. Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells. Electrochim Acta. 2012; 84: 213-222.
- 2Ibrahim R, Shaari N, Mohd Aman AH. Bio-fuel cell for medical device energy system: a review. Int J Energy Res. 2021; 45:14245–14273.
10.1002/er.6741 Google Scholar
- 3Shaari N, Kamarudin SK. Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: an overview. Int J Energy Res. 2019; 43(7): 2756-2794.
- 4Zakaria Z, Kamarudin S, Timmiati S. Membranes for direct ethanol fuel cells: an overview. Appl Energy. 2016; 163: 334-342.
- 5Zakaria Z, Shaari N, Kamarudin SK, Bahru R, Musa MT. A review of progressive advanced polymer nanohybrid membrane in fuel cell application. Int J Energy Res. 2020; 44(11): 8255-8295.
- 6Kwangwon S, Ki-Ho N, Haksoo H. Proton transport in aluminum-substituted mesoporous silica channel-embedded high-temperature anhydrous proton-exchange membrane fuel cells. Sci Rep, (Nature Publisher Group). 2020; 10(1): 10352.
- 7Zakaria Z, Abu Hassan SH, Shaari N, Yahaya AZ, Boon Kar Y. A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation. Int J Energy Res. 2020; 44(2): 631-650.
- 8Elmer T, Riffat SB. State of the art review: fuel cell technologies in the domestic built environment. Prog Sustain Energy Technol. 2014, Springer; II: 247-271.
- 9Shaari N, Kamarudin SK, Bahru R, Osman SH, Md Ishak NAI. Progress and challenges: review for direct liquid fuel cell. Int J Energy Res. 2021; 45(5): 6644-6688.
- 10Casalegno A, Grassini P, Marchesi R. Experimental analysis of methanol cross-over in a direct methanol fuel cell. Appl Therm Eng. 2007; 27(4): 748-754.
- 11Chang J-Y, Kuan YD, Lee SM, Lee SR. Characterization of a liquid feed direct methanol fuel cell with Sierpinski carpets fractal current collectors. J Power Sources. 2008; 184(1): 180-190.
- 12Smitha B, Sridhar S, Khan A. Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci. 2005; 259(1–2): 10-26.
- 13Taufiq Musa M, Shaari N, Kamarudin SK. Carbon nanotube, graphene oxide and montmorillonite as conductive fillers in polymer electrolyte membrane for fuel cell: an overview. Int J Energy Res. 2021; 45(2): 1309-1346.
- 14Gutru R, Turtayeva Z, Xu F, Maranzana G, Vigolo B, Desforges A. A comprehensive review on water management strategies and developments in anion exchange membrane fuel cells. Int J Hydrogen Energy. 2020; 45:19642–19663.
- 15Peighambardoust SJ, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy. 2010; 35(17): 9349-9384.
- 16Shaari N, Zakaria Z, Kamarudin SK. The optimization performance of cross-linked sodium alginate polymer electrolyte bio-membranes in passive direct methanol/ethanol fuel cells. Int J Energy Res. 2019; 43(14): 8275-8285.
- 17Ehsani M, Gao Y, Longo S, Ebrahimi K. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles. CRC Press; 2018.
- 18Steele BC, Heinzel A. Materials for fuel-cell technologies. Nature In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific; 224-231.
- 19Yusoff YN, Shaari N. An overview on the development of nanofiber-based as polymer electrolyte membrane and electrocatalyst in fuel cell application. Int J Energy Res. 2021.
- 20Abdullah N, Kamarudin S, Shyuan L. Novel anodic catalyst support for direct methanol fuel cell: characterizations and single-cell performances. Nanoscale Res Lett. 2018; 13(1): 90.
- 21Shaari N, Kamarudin SK, Bahru R. Carbon and graphene quantum dots in fuel cell application: an overview. Int J Energy Res. 2021; 45(2): 1396-1424.
- 22Soares BG. Ionic liquid: a smart approach for developing conducting polymer composites: a review. J Mol Liq. 2018; 262: 8-18.
- 23Yan X, Anguille S, Bendahan M, Moulin P. Ionic liquids combined with membrane separation processes: a review. Sep Purif Technol. 2019; 222: 230-253.
- 24Yavir K, Marcinkowski Ł, Marcinkowska R, Namieśnik J, Kloskowski A. Analytical applications and physicochemical properties of ionic liquid-based hybrid materials: a review. Anal Chim Acta. 2019; 1054: 1-16.
- 25Bakonyi P, Koók L, Rózsenberszki T, Tóth G, Bélafi-Bakó K, Nemestóthy N. Development and application of supported ionic liquid membranes in microbial fuel cell technology: a concise overview. Membranes. 2020; 10(1): 16.
- 26Elwan HA, Mamlouk M, Scott K. A review of proton exchange membranes based on protic ionic liquid/polymer blends for polymer electrolyte membrane fuel cells. J Power Sources. 2020; 484:229197.
- 27Ahmad NNR, Leo CP, Mohammad AW, Shaari N, Ang WL. Recent progress in the development of ionic liquid-based mixed matrix membrane for CO2 separation: a review. Int J Energy Res. 2021; 45(7): 9800-9830.
- 28Correia DM, Fernandes LC, Martins PM, et al. Ionic liquid–polymer composites: a new platform for multifunctional applications. Adv Funct Mater. 2020; 30(24):1909736.
- 29Hejazifar M, Lanaridi O, Bica-Schröder K. Ionic liquid based microemulsions: a review. J Mol Liq. 2020; 303:112264.
- 30Nulwala H, Mirjafari A, Zhou X. Ionic liquids and poly (ionic liquid) s for 3D printing–a focused mini-review. Eur Polym J. 2018; 108: 390-398.
- 31Minea AA, Murshed SMS. A review on development of ionic liquid based nanofluids and their heat transfer behavior. Renew Sustain Energy Rev. 2018; 91: 584-599.
- 32Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev. 2017; 117(10): 7190-7239.
- 33Liu B, Jin N. The applications of ionic liquid as functional material: a review. Curr Organ Chem. 2016; 20(20): 2109-2116.
- 34Diaz M, Ortiz A, Ortiz I. Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J Membr Sci. 2014; 469: 379-396.
- 35Park MJ, Choi I, Hong J, Kim O. Polymer electrolytes integrated with ionic liquids for future electrochemical devices. J Appl Polym Sci. 2013; 129(5): 2363-2376.
- 36Le Bideau J, Viau L, Vioux A. Ionogels, ionic liquid based hybrid materials. Chem Soc Rev. 2011; 40(2): 907-925.
- 37Opallo M, Lesniewski A. A review on electrodes modified with ionic liquids. J Electroanal Chem. 2011; 656(1): 2-16.
- 38Ahmad N, Leo C, Ahmad A. Effects of solvent and ionic liquid properties on ionic liquid enhanced polysulfone/SAPO-34 mixed matrix membrane for CO2 removal. Micropor Mesopor Mater. 2019; 283: 64-72.
- 39Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009; 8(8): 621-629.
- 40Rosli NAH, Loh KS, Wong WY, et al. Review of chitosan-based polymers as proton exchange membranes and roles of chitosan-supported ionic liquids. Int J Mol Sci. 2020; 21(2): 632.
- 41Hagiwara R, Lee JS. Ionic liquids for electrochemical devices. Electrochemistry. 2007; 75(1): 23-34.
- 42Egorova KS, Gordeev EG, Ananikov VP. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev. 2017; 117(10): 7132-7189.
- 43Greaves TL, Drummond CJ. Protic ionic liquids: evolving structure–property relationships and expanding applications. Chem Rev. 2015; 115(20):11379–11448.
- 44Silva W, Zanatta M, Ferreira AS, Corvo MC, Cabrita EJ. Revisiting ionic liquid structure-property relationship: a critical analysis. Int J Mol Sci. 2020; 21(20): 7745.
- 45Hough WL, Smiglak M, Rodríguez H, et al. The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem. 2007; 31(8): 1429-1436.
- 46Hajipour AR, Rafiee F. Recent progress in ionic liquids and their applications in organic synthesis. Organ Prep Proced Int. 2015; 47(4): 249-308.
- 47Dai Z, Noble RD, Gin DL, Zhang X, Deng L. Combination of ionic liquids with membrane technology: a new approach for CO2 separation. J Membr Sci. 2016; 497: 1-20.
- 48Abdurrokhman I, Elamin K, Danyliv O, Hasani M, Swenson J, Martinelli A. Protic ionic liquids based on the alkyl-imidazolium cation: effect of the alkyl chain length on structure and dynamics. J Phys Chem B. 2019; 123(18): 4044-4054.
- 49Greaves TL, Drummond CJ. Protic ionic liquids: properties and applications. Chem Rev. 2008; 108(1): 206-237.
- 50Maton C, De Vos N, Stevens CV. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev. 2013; 42(13): 5963-5977.
- 51Cao Y, Mu T. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Indus Eng Chem Res. 2014; 53(20): 8651-8664.
- 52Del Sesto RE, Mccleskey TM, Macomber C, et al. Limited thermal stability of imidazolium and pyrrolidinium ionic liquids. Thermochimica Acta. 2009; 491(1–2): 118-120.
- 53Mohammad, A., Green solvents II: properties and applications of ionic liquids. Vol. 2. 2012: Springer Science & Business Media.
- 54Endres F, El Abedin SZ. Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys. 2006; 8(18): 2101-2116.
- 55Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen. 2010; 373(1–2): 1-56.
- 56Noda A, Susan MABH, Kudo K, Mitsushima S, Hayamizu K, Watanabe M. Brønsted acid− base ionic liquids as proton-conducting nonaqueous electrolytes. J Phys Chem B. 2003; 107(17): 4024-4033.
- 57Hayyan M, Mjalli FS, Hashim MA, AlNashef IM, Mei TX. Investigating the electrochemical windows of ionic liquids. J Indus Eng Chem. 2013; 19(1): 106-112.
- 58Nakamoto H, Noda A, Hayamizu K, Hayashi S, Hamaguchi HO, Watanabe M. Proton-conducting properties of a brønsted acid−base ionic liquid and ionic melts consisting of Bis(trifluoromethanesulfonyl)imide and benzimidazole for fuel cell electrolytes. J Phys Chem C. 2007; 111(3): 1541-1548.
- 59Yoshizawa-Fujita M, Byrne N, Forsyth M, MacFarlane DR, Ohno H. Proton transport properties in zwitterion blends with Brønsted acids. J Phys Chem B. 2010; 114(49):16373–16380.
- 60Ortiz-Martínez V, Salar-Garcia MJ, Fernandez FJ, de los Rios AP. Development and characterization of a new embedded ionic liquid based membrane-cathode assembly for its application in single chamber microbial fuel cells. Energy. 2015; 93: 1748-1757.
- 61Mohammed H, Al-Othman A, Nancarrow P, Elsayed Y, Tawalbeh M. Enhanced proton conduction in zirconium phosphate/ionic liquids materials for high-temperature fuel cells. Int J Hydrogen Energy. 2019; 46(6): 4857-4869.
- 62Luo J, Conrad O, Vankelecom IFJ. Physicochemical properties of phosphonium-based and ammonium-based protic ionic liquids. J Mater Chem. 2012; 22(38):20574–20579.
10.1039/c2jm34359b Google Scholar
- 63Salar-García M, Ortiz-Martinez VM, Baicha Z, de los Rios RP, Hernandez-Fernandez FJ. Scaled-up continuous up-flow microbial fuel cell based on novel embedded ionic liquid-type membrane-cathode assembly. Energy. 2016; 101: 113-120.
- 64Lakshminarayana G, Nogami M. Inorganic–organic hybrid membranes with anhydrous proton conduction prepared from tetramethoxysilane/methyl-trimethoxysilane/trimethylphosphate and 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide for H2/O2 fuel cells. Electrochim Acta. 2010; 55(3): 1160-1168.
- 65Li Z, Liu H, Liu Y, He P, Li J. A room-temperature ionic-liquid-Templated proton-conducting gelatinous electrolyte. J Phys Chem B. 2004; 108(45):17512–17518.
- 66Takahashi C, Shirai T, Hayashi Y, Fuji M. Study of intercalation compounds using ionic liquids into montmorillonite and their thermal stability. Solid State Ion. 2013; 241: 53-61.
- 67Li HB, Jiang F, Di Z, Gu J. Anhydrous proton-conducting glass membranes doped with ionic liquid for intermediate-temperature fuel cells. Electrochim Acta. 2012; 59: 86-90.
- 68Luo WH, Zhao L-H. Inorganic–organic hybrid membranes with anhydrous proton conduction prepared from tetraethoxysilane, 3-glycidyloxypropyltrimethoxysilane, trimethyl phosphate and diethylethylammonium trifluoromethanesulfonate. J Membr Sci. 2014; 451: 32-39.
- 69Wei H, Wu XS, Zou L, Wen GY, Liu DY, Qiao Y. Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells. J Power Sources. 2016; 315: 192-198.
- 70Nakajima H, Ohno H. Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer. 2005; 46(25):11499–11504.
- 71Ueki T, Watanabe M. Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules. 2008; 41(11): 3739-3749.
- 72Lin B, Yuan W, Xu F, et al. Protic ionic liquid/functionalized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cell applications. Appl Surf Sci. 2018; 455: 295-301.
- 73Yasuda T, Nakamura SI, Honda Y, Kinugawa K, Lee SY, Watanabe M. Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications. ACS Appl Mater Interfaces. 2012; 4(3): 1783-1790.
- 74Zanchet L, da Trindade LG, Bariviera W, et al. 3-Triethylammonium propane sulfonate ionic liquids for Nafion-based composite membranes for PEM fuel cells. J Mater Sci. 2020; 55: 1-14.
- 75Di Noto V, Piga M, Giffin GA, et al. Influence of anions on proton-conducting membranes based on neutralized nafion 117, triethylammonium methanesulfonate, and triethylammonium perfluorobutanesulfonate. 2. Electrical properties. J Phys Chem C. 2012; 116(1): 1370-1379.
- 76Danyliv O, Martinelli A. Nafion/protic ionic liquid blends: nanoscale organization and transport properties. J Phys Chem C. 2019; 123(23):14813–14824.
- 77da Trindade LG, Zanchet L, Borba KMN, Souza JC, Leite ER, Martini EMA. Effect of the doping time of the 1-butyl-3-methylimidazolium ionic liquid cation on the Nafion membrane proprieties. Int J Energy Res. 2018; 42(11): 3535-3543.
- 78Li Y, Shi Y, Mehio N, et al. More sustainable electricity generation in hot and dry fuel cells with a novel hybrid membrane of Nafion/nano-silica/hydroxyl ionic liquid. Appl Energy. 2016; 175: 451-458.
- 79Maiti J, Kakati N, Woo SP, Yoon YS. Nafion® based hybrid composite membrane containing GO and dihydrogen phosphate functionalized ionic liquid for high temperature polymer electrolyte membrane fuel cell. Compos Sci Technol. 2018; 155: 189-196.
- 80van de Ven E, Chairuna A, Merle G, Benito SP, Borneman Z, Nijmeijer K. Ionic liquid doped polybenzimidazole membranes for high temperature proton exchange membrane fuel cell applications. J Power Sources. 2013; 222: 202-209.
- 81Liu S, Zhou L, Wang P, et al. Ionic-liquid-based proton conducting membranes for anhydrous H2/Cl2 fuel-cell applications. ACS Appl Mater Interfaces. 2014; 6(5): 3195-3200.
- 82Skorikova G, Rauber D, Aili D, et al. Protic ionic liquids immobilized in phosphoric acid-doped polybenzimidazole matrix enable polymer electrolyte fuel cell operation at 200 °C. J Membr Sci. 2020; 608:118188.
- 83Maity S, Singha S, Jana T. Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica. Polymer. 2015; 66: 76-85.
- 84Liu F, Wang S, Li J, et al. Polybenzimidazole/ionic-liquid-functional silica composite membranes with improved proton conductivity for high temperature proton exchange membrane fuel cells. J Membr Sci. 2017; 541: 492-499.
- 85Harun NAM, Shaari N, Nik Zaiman NFH. A review of alternative polymer electrolyte membrane for fuel cell application based on sulfonated poly (ether ether ketone). Int J Energy Res.
- 86Jothi PR, Dharmalingam S. An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium. J Membr Sci. 2014; 450: 389-396.
- 87da Trindade LG, Zanchet L, Martins PC, et al. The influence of ionic liquids cation on the properties of sulfonated poly (ether ether ketone)/polybenzimidazole blends applied in PEMFC. Polymer. 2019; 179:121723.
- 88Che Q, Fan H, Duan X, Feng F, Mao W, Han X. Layer by layer self-assembly fabrication of high temperature proton exchange membrane based on ionic liquids and polymers. J Mol Liq. 2018; 269: 666-674.
- 89Arias JJR, Carlos Dutra J, Gomes ADS. Hybrid membranes of sulfonated poly ether ether ketone, ionic liquid and organically modified montmorillonite for proton exchange membranes with enhanced ionic conductivity and ionic liquid lixiviation protection. J Membr Sci. 2017; 537: 353-361.
- 90da Trindade LG, Pereira EC. SPEEK/zeolite/ionic-liquid anhydrous polymer membranes for fuel-cell applications. Eur J Inorg Chem. 2017; 2017(17): 2369-2376.
- 91da Trindade LG, Borba KMN, Zanchet L, et al. SPEEK-based proton exchange membranes modified with MOF-encapsulated ionic liquid. Mater Chem Phys. 2019; 236:121792.
- 92Wang X, Jin M, Li Y, Zhao L. The influence of various ionic liquids on the properties of SPEEK membrane doped with mesoporous silica. Electrochim Acta. 2017; 257: 290-300.
- 93Batalha JAFL, Dahmouche K, Sampaio RB, de Souza Gomes A. Structure and properties of new sPEEK/zirconia/protic ionic liquid membranes for fuel cell application. Macromol Mater Eng. 2017; 302(3):1600301.
- 94Malik RS, Verma P, Choudhary V. A study of new anhydrous, conducting membranes based on composites of aprotic ionic liquid and cross-linked SPEEK for fuel cell application. Electrochim Acta. 2015; 152: 352-359.
- 95Langevin D, Nguyen QT, Marais S, et al. High-temperature ionic-conducting material: advanced structure and improved performance. J Phys Chem C. 2013; 117(30):15552–15561.
- 96Lee S-Y, Yasuda T, Watanabe M. Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. J Power Sources. 2010; 195(18): 5909-5914.
- 97Lee JS, Nohira T, Hagiwara R. Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified intermediate temperature fuel cell. J Power Sources. 2007; 171(2): 535-539.
- 98Martinelli A, Matic A, Jacobsson P, et al. Physical properties of proton conducting membranes based on a protic ionic liquid. J Phys Chem B. 2007; 111(43):12462–12467.
- 99Mališ J, Mazúr P, Schauer J, Paidar M, Bouzek K. Polymer-supported 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium trifluoromethanesulfonate as electrolytes for the high temperature PEM-type fuel cell. Int J Hydrogen Energy. 2013; 38(11): 4697-4704.
- 100Nair MG, Mohapatra SR, Garda MS, Patanair B, Saiter-Fourcin A, Thomas S. Role of protic ionic liquid concentration in proton conducting polymer electrolytes for improved electrical and thermal properties. Bristol, United Kingdom: Materials Research Express; 2020.
10.1088/2053-1591/ab9665 Google Scholar
- 101Yang J, Tan S, Xie W, Luo J, Wang C, Wu Y. Promotion of anhydrous proton conduction by polyvinyl alcohol in liquid crystalline composite membranes containing 1-tetradecyl-3-methylimidazolium hydrogen sulfate. Ionics. 2020; 26(4): 1819-1827.
- 102Gohil JM, Karamanev DG. Novel approach for the preparation of ionic liquid/imidazoledicarboxylic acid modified poly(vinyl alcohol) polyelectrolyte membranes. J Membr Sci. 2016; 513: 33-39.
- 103Ortiz-Negrón A, Lasanta-Cotto N, Suleiman D. Imidazolium ionic liquid incorporation on sulfonated poly (styrene-isobutylene-styrene) proton exchange membranes. J Appl Polym Sci. 2017; 134(22).
- 104Rogalsky S, Bardeau JF, Makhno S, et al. New proton conducting membrane based on bacterial cellulose/polyaniline nanocomposite film impregnated with guanidinium-based ionic liquid. Polymer. 2018; 142: 183-195.
- 105Díaz M, Ortiz A, Vilas M, Tojo E, Ortiz I. Performance of PEMFC with new polyvinyl-ionic liquids based membranes as electrolytes. Int J Hydrogen Energy. 2014; 39(8): 3970-3977.
- 106Eguizábal A, Lemus J, Pina MP. On the incorporation of protic ionic liquids imbibed in large pore zeolites to polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J Power Sources. 2013; 222: 483-492.
- 107Thanganathan U, Nogami M. Investigations on effects of the incorporation of various ionic liquids on PVA based hybrid membranes for proton exchange membrane fuel cells. Int J Hydrogen Energy. 2015; 40(4): 1935-1944.
- 108Fatyeyeva K, Rogalsky S, Makhno S, Tarasyuk O, Soto Puente J, Marais S. Polyimide/ionic liquid composite membranes for middle and high temperature fuel cell application: water sorption behavior and proton conductivity. Membranes. 2020; 10(5): 82.
- 109Fernicola A, Panero S, Scrosati B, Tamada M, Ohno H. New types of Brönsted acid–base ionic liquids-based membranes for applications in PEMFCs. ChemPhysChem. 2007; 8(7): 1103-1107.
- 110Li W, Zhang F, Yi S, Huang C, Zhang H, Pan M. Effects of casting solvent on microstructrue and ionic conductivity of anhydrous sulfonated poly (ether ether ketone)-inoic liquid composite membranes. Int J Hydrogen Energy. 2012; 37(1): 748-754.
- 111Jiang J, Gao D, Li Z, Su G. Gel polymer electrolytes prepared by in situ polymerization of vinyl monomers in room-temperature ionic liquids. React Funct Polym. 2006; 66(10): 1141-1148.
- 112Lewandowski A, Świderska A. New composite solid electrolytes based on a polymer and ionic liquids. Solid State Ion. 2004; 169(1–4): 21-24.
- 113Noda A, Watanabe M. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta. 2000; 45(8–9): 1265-1270.
- 114Susan MABH, Kaneko T, Noda A, Watanabe M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc. 2005; 127(13): 4976-4983.
- 115Ohno H. Design of ion conductive polymers based on ionic liquids. Macromolecular Symposia, 2007; 249–250(1): 551-556.
- 116Bara JE, Gin DL, Noble RD. Effect of anion on gas separation performance of polymer− room-temperature ionic liquid composite membranes. Indus Eng Chem Res. 2008; 47(24): 9919-9924.
- 117Simons K, Nijmeijer K, Bara JE, Noble RD, Wessling M. How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO2 permeation? J Membr Sci. 2010; 360(1–2): 202-209.
- 118Bara JE, Hatakeyama ES, Gabriel CJ, et al. Synthesis and light gas separations in cross-linked gemini room temperature ionic liquid polymer membranes. J Membr Sci. 2008; 316(1–2): 186-191.
- 119Bara JE, Hatakeyama ES, Gin DL, Noble RD. Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polymr Adv Technol. 2008; 19(10): 1415-1420.
- 120Ortiz-Martínez VM, Ortiz A, Fernández-Stefanuto V, et al. Fuel cell electrolyte membranes based on copolymers of protic ionic liquid [HSO3-BVIm][TfO] with MMA and hPFSVE. Polymer. 2019; 179:121583.
- 121Põhako-Esko K, Timusk M, Saal K, Lõhmus R, Kink I, Mäeorg U. Increased conductivity of polymerized ionic liquids through the use of a nonpolymerizable ionic liquid additive. J Mater Res. 2013; 28(22): 3086-3093.
- 122Díaz M, Ortiz A, Isik M, Mecerreyes D, Ortiz I. Highly conductive electrolytes based on poly ([HSO3-BVIm][TfO])/[HSO3-BMIm][TfO] mixtures for fuel cell applications. Int J Hydrogen Energy. 2015; 40(34):11294–11302.
- 123Rao J, Wang X, Yunis R, et al. A novel proton conducting iongel electrolyte based on poly (ionic liquids) and protic ionic liquid. Electrochim Acta. 2020; 346:136224.
- 124Marcilla R, Alcaide F, Sardon H, Pomposo JA, Pozo-Gonzalo C, Mecerreyes D. Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochem Commun. 2006; 8(3): 482-488.
- 125Mecerreyes D. Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci. 2011; 36(12): 1629-1648.
- 126Yuan J, Mecerreyes D, Antonietti M. Poly (ionic liquid) s: an update. Prog Polym Sci. 2013; 38(7): 1009-1036.
- 127Liu F, Wang S, Chen H, et al. Cross-linkable polymeric ionic liquid improve phosphoric acid retention and long-term conductivity stability in polybenzimidazole based PEMs. ACS Sustain Chem Eng. 2018; 6(12):16352–16362.
- 128Chen H, Wang S, Li J, et al. Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for HT-PEMFC applications. J Taiwan Inst Chem Eng. 2019; 95: 185-194.
- 129Koyilapu R, Singha S, Kutcherlapati SNR, Jana T. Grafting of vinylimidazolium-type poly (ionic liquid) on silica nanoparticle through RAFT polymerization for constructing nanocomposite based PEM. Polymer. 2020; 195:122458.
- 130Kallem P, Drobek M, Julbe A, Vriezekolk EJ, Mallada R, Pina MP. Hierarchical porous polybenzimidazole microsieves: an efficient architecture for anhydrous proton transport via polyionic liquids. ACS Appl Mater Interfaces. 2017; 9(17):14844–14857.
- 131Chen N, Liu Y, Long C, Li R, Wang F, Zhu H. Enhanced performance of ionic-liquid-coated silica/quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) composite membrane for anion exchange membrane fuel cells. Electrochim Acta. 2017; 258: 124-133.
- 132Lin B, Qiao G, Chu F, et al. Preparation and characterization of imidazolium-based membranes for anion exchange membrane fuel cell applications. Int J Hydrogen Energy. 2017; 42(10): 6988-6996.
- 133Lin J, Yan X, He G, et al. Thermoplastic interpenetrating polymer networks based on polybenzimidazole and poly (1, 2-dimethy-3-allylimidazolium) for anion exchange membranes. Electrochim Acta. 2017; 257: 9-19.
- 134Meek KM, Sun R, Willis C, Elabd YA. Hydroxide conducting polymerized ionic liquid pentablock terpolymer anion exchange membranes with methylpyrrolidinium cations. Polymer. 2018; 134: 221-226.
- 135Elumalai V, Dharmalingam S. Octa-imidazolium POSS/quaternized polysulfone composite anion exchange membrane for alkaline fuel cell. Polym Compos. 2019; 40(4): 1536-1544.
- 136Elumalai V, Sangeetha D. Synergic effect of ionic liquid grafted titanate nanotubes on the performance of anion exchange membrane fuel cell. J Power Sources. 2019; 412: 586-596.
- 137Ouadah A, Xu H, Luo T, et al. A series of poly (butylimidazolium) ionic liquid functionalized copolymers for anion exchange membranes. J Power Sources. 2017; 371: 77-85.
- 138Ouadah A, Luo T, Wang J, et al. Imidazolium-grafted graphene oxide via free radical polymerization: an efficient and simple method for an interpenetrating polymer network as electrolyte membrane. Compos Sci Technol. 2018; 164: 204-213.
- 139Pizzoferrato R, Ciotta E, Ferrari IV, et al. Layered double hydroxides containing an ionic liquid: ionic conductivity and use in composite anion exchange membranes. ChemElectroChem. 2018; 5(19): 2781-2788.
- 140Qiu M, Zhang B, Wu H, et al. Preparation of anion exchange membrane with enhanced conductivity and alkaline stability by incorporating ionic liquid modified carbon nanotubes. J Membr Sci. 2019; 573: 1-10.
- 141Vilela C, Sousa N, Pinto RJB, Silvestre AJD, Figueiredo FML, Freire CSR. Exploiting poly (ionic liquids) and nanocellulose for the development of bio-based anion-exchange membranes. Biomass Bioenergy. 2017; 100: 116-125.
- 142Wang S, Shi QX, Ye YS, et al. Constructing desirable ion-conducting channels within ionic liquid-based composite polymer electrolytes by using polymeric ionic liquid-functionalized 2D mesoporous silica nanoplates. Nano Energy. 2017; 33: 110-123.
- 143Wang D, Wang Y, Wan H, Wang J, Wang L. Synthesis of gemini basic ionic liquids and their application in anion exchange membranes. RSC Adv. 2018; 8(19):10185–10196.
- 144Yang Q, Lin CX, Liu FH, et al. Poly (2, 6-dimethyl-1, 4-phenylene oxide)/ionic liquid functionalized graphene oxide anion exchange membranes for fuel cells. J Membr Sci. 2018; 552: 367-376.
- 145Zhang F, He X, Cheng C, et al. Bis-imidazolium functionalized self-crosslinking block polynorbornene anion exchange membrane. Int J Hydrogen Energy. 2020; 45:13090–13100.
- 146Li K, Guan M, Tang S. Novel multi-channel anion exchange membrane based on poly ionic liquid-impregnated cationic metal-organic frameworks. Int J Hydrogen Energy. 2020; 45(35): 17813-17823.
- 147Wang J-L, Wang LL, Feng RJ, Zhang Y. Synthesis and characterization of novel anion exchange membranes containing bi-imidazolium-based ionic liquid for alkaline fuel cells. Solid State Ion. 2015; 278: 144-151.
- 148Wang C, Lin B, Qiao G, et al. Polybenzimidazole/ionic liquid functionalized graphene oxide nanocomposite membrane for alkaline anion exchange membrane fuel cells. Mater Lett. 2016; 173: 219-222.
- 149Wang D, Wang Y, Wang J, Wang L. Synthesized Geminal-imidazolium-type ionic liquids applying for PVA-FP/[DimL][OH] anion exchange membranes for fuel cells. Polymer. 2019; 170: 31-42.
- 150Jheng L-C, Tai CK, Hsu SLC, et al. Study on the alkaline stability of imidazolium and benzimidazolium based polyelectrolytes for anion exchange membrane fuel cells. Int J Hydrogen Energy. 2017; 42(8): 5315-5326.
- 151Guo M, Fang J, Xu H, et al. Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells. J Membr Sci. 2010; 362(1–2): 97-104.
- 152Elwan HA, Thimmappa R, Mamlouk M, Scott K. Applications of poly ionic liquids in proton exchange membrane fuel cells: a review. J Power Sources. 2021; 510:230371.
- 153Shaari N, Kamarudin S. Graphene in electrocatalyst and proton conductiong membrane in fuel cell applications: an overview. Renew Sustain Energy Rev. 2017; 69: 862-870.
- 154Khan A, Gunawan CA, Zhao C. Oxygen reduction reaction in ionic liquids: fundamentals and applications in energy and sensors. ACS Sustain Chem Eng. 2017; 5(5): 3698-3715.
- 155Meng Y, Aldous L, Belding SR, Compton RG. The formal potentials and electrode kinetics of the proton/hydrogen couple in various room temperature ionic liquids. Chem Commun. 2012; 48(45): 5572-5574.
- 156Lou M, Wang R, Yang L, et al. Ionic liquid polyoxometalate-enhanced Pd/N, P-codoped coal-based carbon fiber catalysts for formic acid electrooxidation. Appl Surf Sci. 2020; 516:146137.
- 157Pham-Truong T-N, Ranjan C, Randriamahazaka H, Ghilane J. Nitrogen doped carbon dots embedded in poly (ionic liquid) as high efficient metal-free electrocatalyst for oxygen reduction reaction. Catal Today. 2019; 335: 381-387.
- 158Kernchen U, Etzold B, Korth W, Jess A. Solid catalyst with ionic liquid layer (SCILL)–a new concept to improve selectivity illustrated by hydrogenation of cyclooctadiene. Chem Eng Technol Indus Chem Plant Equip Process Eng Biotechnol. 2007; 30(8): 985-994.
- 159Snyder J, Fujita T, Chen MW, Erlebacher J. Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat Mater. 2010; 9(11): 904-907.
- 160Snyder J, Livi K, Erlebacher J. Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous NiPt alloy nanoparticles. Adv Funct Mater. 2013; 23(44): 5494-5501.
- 161Sun X, Qiang Q, Yin Z, Wang Z, Ma Y, Zhao C. Monodispersed silver-palladium nanoparticles for ethanol oxidation reaction achieved by controllable electrochemical synthesis from ionic liquid microemulsions. J Colloid Interface Sci. 2019; 557: 450-457.
- 162Gao J, Guo Y, Wu B, et al. Impact of cation selection on proton exchange membrane fuel cell performance with trimethylethyl amide, ethylpyridinium and ethylmethyl imidazolium ionic liquid carried by poly (vinylidene fluoride) membrane as electrolyte. J Power Sources. 2014; 251: 432-438.
- 163Gao J, Liu J, Liu W, et al. An efficient and green approach to prepare hydrophilic imidazolium ionic liquids free of halide and its effect on oxygen reduction reaction of Pt/C catalyst. Int J Hydrogen Energy. 2012; 37(17):13167–13177.
- 164Zhu Z, Yan X, Tang H, et al. Protic ionic liquid modified electrocatalyst enables robust anode under cell reversal condition. J Power Sources. 2017; 351: 138-144.
- 165BinSabt MH, Atta NF, Ahmed YM, Galal A. Nanostructured Pt-Ru/ionic liquid crystal composite for electrocatalytic oxidation of methanol. Int J Electrochem Sci. 2017; 12:11271–86.
- 166Jiao R, Zhang W, Sun H, et al. N-and S-doped nanoporous carbon framework derived from conjugated microporous polymers incorporation with ionic liquids for efficient oxygen reduction reaction. Mater Today Energy. 2020; 16:100382.
- 167Duan W, Li A, Chen Y, Zhuo K, Liu J, Wang J. Ionic liquid-assisted synthesis of reduced graphene oxide–supported hollow spherical PtCu alloy and its enhanced electrocatalytic activity toward methanol oxidation. J Nanopart Res. 2018; 20(11): 287.
- 168Medetalibeyoğlu H, Manap S, Yokuş ÖA, et al. Fabrication of Pt/Pd nanoparticles/polyoxometalate/ionic liquid nanohybrid for electrocatalytic oxidation of methanol. J Electrochem Soc. 2018; 165(5):F338–F341.
- 169Feng J-J, Lin XX, Chen LX, Liu MT, Yuan J, Wang AJ. Ionic liquid-assisted synthesis of composition-tunable cross-linked AgPt aerogels with enhanced electrocatalysis. J Colloid Interface Sci. 2017; 498: 22-30.
- 170Gao J, He C, Liu J, et al. Polymerizable ionic liquid as a precursor for N, P co-doped carbon toward the oxygen reduction reaction. Cat Sci Technol. 2018; 8(4): 1142-1150.
- 171Gao J, Ma N, Tian J, et al. High performance of N, P co-doped metal-free carbon catalyst derived from ionic liquid for oxygen reduction reaction. J Solid State Electrochem. 2018; 22(2): 519-525.
- 172George M, Zhang GR, Schmitt N, et al. Effect of ionic liquid modification on the ORR performance and degradation mechanism of Trimetallic PtNiMo/C catalysts. ACS Catal. 2019; 9(9): 8682-8692.
- 173Izumi R, Yao Y, Tsuda T, Torimoto T, Kuwabata S. Pt-nanoparticle-supported carbon Electrocatalysts functionalized with a Protic ionic liquid and organic salt. Adv Mater Interfaces. 2018; 5(3):1701123.
- 174Peediyakkal HP, Yu J, Munakata H, Kanamura K. Highly durable non-platinum catalyst for Protic ionic liquid based intermediate temperature PEFCs. Electrochemistry. 2019; 87(1): 35-46.
- 175Li Y, Hart J, Profitt L, et al. Sequential capacitive deposition of ionic liquids for conformal thin film coatings on oxygen reduction reaction electrocatalysts. ACS Catal. 2019; 9(10): 9311-9316.
- 176Li C, Huang B, Luo M, et al. An efficient ultrathin PtFeNi nanowire/ionic liquid conjugate electrocatalyst. Appl Catal B Environ. 2019; 256:117828.
- 177Liu Y, Li S, Li X, Mao L, Liu F. Fe–N co-doped porous carbon derived from ionic liquids as an efficient Electrocatalyst for the oxygen reduction reaction. Indus Eng Chem Res. 2018; 57(46):15638–15646.
- 178Martinaiou I, Wolker T, Shahraei A, et al. Improved electrochemical performance of Fe-NC catalysts through ionic liquid modification in alkaline media. J Power Sources. 2018; 375: 222-232.
- 179Qiao M, Tang C, Tanase LC, et al. Oxygenophilic ionic liquids promote the oxygen reduction reaction in Pt-free carbon electrocatalysts. Mater Horiz. 2017; 4(5): 895-899.
- 180Sharfand SH, Hoseini SJ, Bahrami M. Ionic liquid-assisted synthesis of Pt nano thin films at toluene–water interface: enhanced CO tolerance in methanol fuel cells and adsorptive removal of p-nitrophenol from water. Polyhedron. 2018; 151: 483-497.
- 181Shaari N, Kamarudin SK. Current status, opportunities, and challenges in fuel cell catalytic application of aerogels. Int J Energy Res. 2019; 43(7): 2447-2467.
- 182She Y, Chen J, Zhang C, et al. Nitrogen-doped graphene derived from ionic liquid as metal-free catalyst for oxygen reduction reaction and its mechanisms. Appl Energy. 2018; 225: 513-521.
- 183Shi Y-C, Chen SS, Feng JJ, Lin XX, Wang W, Wang AJ. Dicationic ionic liquid mediated fabrication of Au@ Pt nanoparticles supported on reduced graphene oxide with highly catalytic activity for oxygen reduction and hydrogen evolution. Appl Surf Sci. 2018; 441: 438-447.
- 184Shi H, Wang R, Lou M, et al. A novel Pt/pyridine ionic liquid polyoxometalate/rGO tri-component hybrid and its enhanced activities for methanol electrooxidation. Electrochim Acta. 2019; 294: 93-101.
- 185Sriram P, Kumar MK, Selvi GT, Jha NS, Mohanapriya N, Jha SK. Elucidation of ultrasonic wave-assisted electrodeposited AgPd nanoalloy from ionic liquid as an efficient bifunctional electrocatalyst for methanol oxidation and hydrogen peroxide reduction. Electrochim Acta. 2019; 323:134809.
- 186Trombetta F, Lima DW, Fiegenbaum F, Becker MR, de Souza MO, Martini EMA. C16MI. OTf ionic liquid on Pt/C and PtMo/C anodes improves the PEMFC performance. Int J Hydrogen Energy. 2018; 43(14): 6945-6953.
- 187Wang M, Zhang H, Thirunavukkarasu G, et al. Ionic liquid-modified microporous ZnCoNC-based Electrocatalysts for polymer electrolyte fuel cells. ACS Energy Lett. 2019; 4(9): 2104-2110.
- 188Yang L, Deng W, Zhang Y, Tan Y, Ma M, Xie Q. Boosting current generation in microbial fuel cells by an order of magnitude by coating an ionic liquid polymer on carbon anodes. Biosens Bioelectron. 2017; 91: 644-649.
- 189Yang H, Yu Z, Li S, Zhang Q, Jin J, Ma J. Ultrafine palladium-gold-phosphorus ternary alloyed nanoparticles anchored on ionic liquids-noncovalently functionalized carbon nanotubes with excellent electrocatalytic property for ethanol oxidation reaction in alkaline media. J Catal. 2017; 353: 256-264.
- 190Zdolšek N, Dimitrijević A, Bendová M, et al. Electrocatalytic activity of ionic-liquid-derived porous carbon materials for the oxygen reduction reaction. ChemElectroChem. 2018; 5(7): 1037-1046.
- 191Zhang G-R, Wolker T, Sandbeck DJS, et al. Tuning the electrocatalytic performance of ionic liquid modified Pt catalysts for the oxygen reduction reaction via cationic chain engineering. ACS Catal. 2018; 8(9): 8244-8254.
- 192Zhang SH, Gao YJ, Cheng S, et al. Fe(CN)5@PIL-derived N-doped porous carbon with FeCxNyactive sites as a robust electrocatalyst for the oxygen reduction reaction. Cat Sci Technol. 2019; 9(1): 97-105.
- 193Zhou Y, Li X, Yu C, et al. Synergistic and durable Pt-WC catalyst for methanol electro-oxidation in ionic liquid aqueous solution. ACS Appl Energy Mater. 2019; 2(12): 8459-8463.
- 194Vázquez-Fernández I, Raghibi M, Bouzina A, Timperman L, Bigarré J, Anouti M. Protic ionic liquids/poly (vinylidene fluoride) composite membranes for fuel cell application. J Energy Chem. 2021; 53: 197-207.
- 195Zhang G-R, Munoz M, Etzold BJ. Boosting performance of low temperature fuel cell catalysts by subtle ionic liquid modification. ACS Appl Mater Interfaces. 2015; 7(6): 3562-3570.
- 196Vázquez-Fernández I, Raghibi M, Bouzina A, Timperman L, Bigarré J, Anouti M. Protic Ionic liquids/poly (vinylidene fluoride) composite membranes for fuel cell application. J Energy Chem. 2020; 53: 197-207.
- 197Awasthi S, Kiran V, Gaur B. Influence of hydrophobic block length and ionic liquid on the performance of multiblock poly (arylene ether) proton exchange membrane. Int J Hydrogen Energy. 2017; 42(16):11710–11723.
- 198Cho E, Park JS, Sekhon SS, et al. A study on proton conductivity of composite membranes with various ionic liquids for high-temperature anhydrous fuel cells. J Electrochem Soc. 2008; 156(2):B197.
- 199Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci. 2011; 377(1–2): 1-35.
- 200Zhang B, Cao Y, Jiang S, Li Z, He G, Wu H. Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity. J Membr Sci. 2016; 518: 243-253.
- 201Shaari N, Kamarudin SK, Basri S, Shyuan LK, Masdar MS, Nordin D. Enhanced mechanical flexibility and performance of sodium alginate polymer electrolyte bio-membrane for application in direct methanol fuel cell. J Appl Polym Sci. 2018; 135(37):46666.