A first-principles prediction of thermophysical and thermoelectric performances of SrCeO3 perovskite
Preeti Kumari
Department of Physics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
Search for more papers by this authorCorresponding Author
Vipul Srivastava
Department of Physics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
Correspondence
Vipul Srivastava, Department of Physics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
Email: [email protected]
Sajad Ahmad Dar, Department of Physics, Government Maulana Azad Memorial, PG College, Jammu 180006, India.
Email: [email protected]
Search for more papers by this authorRabah Khenata
Laboratoire de Physique Quantique de la matière et de Modèlisation Mathèmatique (LPQ3M), Universitè de Mascara, Mascara, Algèrie
Search for more papers by this authorCorresponding Author
Sajad Ahmad Dar
Department of Physics, Government Maulana Azad Memorial, PG College, Jammu, India
Correspondence
Vipul Srivastava, Department of Physics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
Email: [email protected]
Sajad Ahmad Dar, Department of Physics, Government Maulana Azad Memorial, PG College, Jammu 180006, India.
Email: [email protected]
Search for more papers by this authorSaleh H. Naqib
Department of Physics, University of Rajshahi, Rajshahi, Bangladesh
Search for more papers by this authorPreeti Kumari
Department of Physics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
Search for more papers by this authorCorresponding Author
Vipul Srivastava
Department of Physics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
Correspondence
Vipul Srivastava, Department of Physics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
Email: [email protected]
Sajad Ahmad Dar, Department of Physics, Government Maulana Azad Memorial, PG College, Jammu 180006, India.
Email: [email protected]
Search for more papers by this authorRabah Khenata
Laboratoire de Physique Quantique de la matière et de Modèlisation Mathèmatique (LPQ3M), Universitè de Mascara, Mascara, Algèrie
Search for more papers by this authorCorresponding Author
Sajad Ahmad Dar
Department of Physics, Government Maulana Azad Memorial, PG College, Jammu, India
Correspondence
Vipul Srivastava, Department of Physics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
Email: [email protected]
Sajad Ahmad Dar, Department of Physics, Government Maulana Azad Memorial, PG College, Jammu 180006, India.
Email: [email protected]
Search for more papers by this authorSaleh H. Naqib
Department of Physics, University of Rajshahi, Rajshahi, Bangladesh
Search for more papers by this authorSummary
An ever-increasing demand for energy due to increasing usage is driving the scientists to find out materials for their technological applications. In this regard, thermoelectric materials are considered to be excellent candidates as energy sources. Further, for the suitability of materials in device fabrication, the study of various thermophysical parameters is always required. We have therefore tried to explore various performances of SrCeO3 perovskite, systematically using density functional theory with different potentials. The electronic band structure profile of SrCeO3 shows semiconducting behaviour in the ground state. Thermoelectric performance indicators like Seebeck coefficient, thermal conductivity, electrical conductivity, and power factor have been estimated within temperature 0 to 700 K. Interestingly, SrCeO3 displays a figure of merit value 0.27 at 700 K.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author, [V. Srivastava], upon reasonable request.
REFERENCES
- 1Webster S, Lin H, Carter III FM, Ehmann K, Cao J. Physical mechanisms in hybrid additive manufacturing: A process design framework. J Mater Process Technol. 2021; 291: 117048. http://doi.org/10.1016/j.jmatprotec.2021.117048
- 2Chakraborty M, Hashmi MSJ. Wonder material graphene: performances, synthesis and practical applications. Adv Mater Process Technol. 2018; 4(4): 573-602.
- 3Sorrell S. Reducing energy demand: a review of issues, challenges and approaches. Renew Sust Energ Rev. 2015; 47: 74-82.
- 4Frederiks ER, Stenner K, Hobman EV. Household energy use: applying behavioural economics to understand consumer decision-making and behaviour. Renew Sust Energ Rev. 2015; 41: 1385-1394.
- 5 IRENA. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation: Paper). Abu Dhabi: International Renewable Energy Agency; 2019.
- 6Zabek D, Morini F. Solid state generators and energy harvesters for waste heat recovery and thermal energy harvesting. Therm Sci Eng Progr. 2019; 9: 235-247.
10.1016/j.tsep.2018.11.011 Google Scholar
- 7Nesrine J, Boughamoura A, Müller J, Mezghani B, Tounsi F, Ismail M. A comprehensive review of thermoelectric generators: technologies and applications. Energy Rep. 2020; 6(7): 264-287.
- 8Ong KS, Jiang L, Lai KC. Thermoelectric energy conversion. Compr Energy Syst. 2018; 4(Part-B): 794-815.
10.1016/B978-0-12-809597-3.00433-8 Google Scholar
- 9Seebeck TJ. Magnetic polarization of metals and minerals by temperature differences. Treatises R Acad Sci Berlin. 1825; 265-373.
- 10LaLonde AD, Pei Y, Wang H, Snyder GJ. Lead telluride alloy thermoelectrics. Mater Today. 2011; 14(11): 526-532.
- 11Kudman I. Thermoelectric performances of p-type PbTe-PbSe alloys. J Mater Sci. 1972; 7(9): 1027-1029.
- 12Sootsman JR, He J, Dravid VP, Li C-P, Uher C, Kanatzidis MG. High thermoelectric figure of merit and improved mechanical performances in melt quenched PbTe–Ge and PbTe–Ge1− x Six eutectic and hypereutectic composites. J Appl Phys. 2009; 105(8):083718.
- 13Pei Y, LaLonde A, Iwanaga S, Snyder GJ. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci. 2011; 4(6): 2085-2089.
- 14Wang H, Pei Y, LaLonde AD, Snyder GJ. Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc Natl Acad Sci. 2012; 109(25): 9705-9709.
- 15LaLonde A, Pei DY, Snyder GJ. Reevaluation of PbTe1− x Ix as high-performance n-type thermoelectric material. Energy Environ Sci. 2011; 4(6): 2090-2096.
- 16Wang H, Pei Y, LaLonde AD, Snyder GJ. Heavily doped p-type PbSe with high thermoelectric performance: an alternative for PbTe. Adv Mater. 2011; 23(11): 1366-1370.
- 17Kanatzidis MG. Nanostructured thermoelectrics: the new paradigm? Chem Mater. 2010; 22(3): 648-659.
- 18Hsu KF, Loo S, Guo F, et al. Polychroniadis, Mercouri G. Kanatzidis. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science. 2004; 303(5659): 818-821.
- 19Zhang Q, Wang H, Zhang Q, et al. Effect of silicon and sodium on thermoelectric performances of thallium-doped lead telluride-based materials. Nano Lett. 2012; 12(5): 2324-2330.
- 20Zhang Q, Wang H, Liu W, et al. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy Environ Sci. 2012; 5(1): 5246-5251.
- 21Heremans JP, Wiendlocha B, Chamoire AM. Resonant levels in bulk thermoelectric semiconductors. Energy Environ Sci. 2012; 5(2): 5510-5530.
- 22Jaworski CM, Wiendlocha B, Jovovic V, Heremans JP. Combining alloy scattering of phonons and resonant electronic levels to reach a high thermoelectric figure of merit in PbTeSe and PbTeS alloys. Energy Environ Sci. 2011; 4(10): 4155-4162.
- 23Heremans JP, Thrush CM, Morelli DT. Thermopower enhancement in PbTe with Pb precipitates. J Appl Phys. 2005; 98(6):063703.
- 24Pei Y, LaLonde AD, Wang H, Snyder GJ. Low effective mass leading to high thermoelectric performance. Energy Environ Sci. 2012; 5(7): 7963-7969.
- 25Kraemer D, Poudel B, Feng H-P, et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater. 2011; 10(7): 532-538.
- 26Olsen ML, Warren EL, Parilla PA, et al. A high-temperature, high-efficiency solar thermoelectric generator prototype. Energy Procedia. 2014; 49: 1460-1469.
- 27Onoda M, Tsukahara S. The upper limit of thermoelectric power factors in the metal–band-insulator crossover of the perovskite-type oxygen deficient system SrTiO3− δ/2. J Phys Condens Matter. 2011; 23(4):045604.
- 28Liu J, Wang CL, Su WB, et al. Enhancement of thermoelectric efficiency in oxygen-deficient Sr1−xLaxTiO3−δ ceramics. Appl Phys Lett. 2009; 95(16):162110.
- 29Muta H, Kurosaki K, Yamanaka S. Thermoelectric performances of rare earth doped SrTiO3. J Alloys Compd. 2003; 350(1–2): 292-295.
- 30Muta H, Kurosaki K, Yamanaka S. Thermoelectric performances of reduced and La-doped single-crystalline SrTiO3. J Alloys Compd. 2005; 392(1–2): 306-309.
- 31Ohtaki M, Koga H, Tokunaga T, Eguchi K, Arai H. Electrical transport performances and high-temperature thermoelectric performance of (Ca0.9M0.1) MnO3 (M= Y, La, Ce, Sm, in, Sn, Sb, Pb, bi). J Solid State Chem. 1995; 120(1): 105-111.
- 32Xu G, Funahashi R, Matsubara I, Shikano M, Zhou Y. High-temperature thermoelectric performances of the Ca1-xBixMnO3 system. J Mater Res. 2002; 17(5): 1092-1095.
- 33Hashimoto S-i, Iwahara H. Study on the structural and electrical performances of Sr1−xCexMnO3−α (x = 0.1, 0.3) perovskite oxide. Mater Res Bull. 2000; 35(14–15): 2253-2262.
- 34Flahaut D, Mihara T, Funahashi R, et al. Thermoelectrical performances of A-site substituted Ca1− xRexMnO3 system. J Appl Phys. 2006; 100(8):084911.
- 35Nakatsugawa H, Kubota M, Saito M. Thermoelectric and magnetic performances of Pr1− xSrxMnO3 (0.1≦ x≦ 0.7). Mater Trans. 2015; 56(6): 864-871.
- 36Li J, Ma Z, Sa R, Wu K. Improved thermoelectric power factor and conversion efficiency of perovskite barium stannate. RSC Adv. 2017; 7(52): 32703-32709.
- 37Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964; 136(3B): B864-B871.
- 38Madsen GKH, Singh DJ, Boltz Tra P. A code for calculating band-structure dependent quantities. Comput Phys Commun. 2006; 175(1): 67-71.
- 39Moon J-W, Won-SeonSeo HO, Okawa T, Koumoto K. Ca-doped RCoO3 (R= Gd, Sm, Nd, Pr) as thermoelectric materials. J Mater Chem. 2000; 10(9): 2007-2009.
- 40Moon J-W, Masuda Y, Won-SeonSeo KK. Influence of ionic size of rare-earth site on the thermoelectric performances of RCoO3-type perovskite cobalt oxides. Mater Sci Eng B. 2001; 85(1): 70-75.
- 41Hashimoto H, Kusunose T, Sekino T. Influence of ionic sizes of rare earths on thermoelectric performances of perovskite-type rare earth cobalt oxides RCoO3 (R= Pr, Nd, Tb, Dy). J Alloys Compd. 2009; 484(1–2): 246-248.
- 42Kaur T, Kumar S, Bhat BH, Want B, Srivastava AK. Effect on dielectric, magnetic, optical and structural properties of Nd–co substituted barium hexaferrite nanoparticles. Appl Phys A. 2015; 119(4): 1531-1540.
- 43Kaur T, Kaur B, Bhat BH, Kumar S, Srivastava AK. Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrites. Phys B Condens Matter. 2015; 456: 206-212.
- 44Mukherjee R. Electrical, thermal and elastic properties of methylammonium lead bromide single crystal. Bull Mater Sci. 2020; 43(1): 1-5.
- 45Sharma J, Kumar A, Kumar S, Srivastava AK. Investigation of structural and magnetic properties of Tb–Ni-doped bismuth ferrite nanoparticles by auto-combustion method. Appl Phys A. 2017; 123(8): 1-9.
- 46Sharma J, Bhat BH, Kumar A, et al. Magnetic and dielectric properties of Ce–co substituted BiFeO3 multiferroics. Mater Res Express. 2017; 4(3):036104.
- 47Dar SA, Khandy SA, Islam I, et al. Temperature and pressure dependent electronic, mechanical and thermal performances of f-electron based ferromagnetic barium neptunate. Chin J Phys. 2017; 55(5): 1769-1779.
- 48Dar SA, Srivastava V, Sakalle UK, Pagare G. Insight into structural, electronic, magnetic, mechanical, and Thermophysical performances of actinide Perovskite BaPuO3. J Supercond Nov Magn. 2018; 31(10): 3201-3208.
- 49Dar SA, Srivastava V, Sakalle UK, Khandy SA, Gupta DC. A DFT study on structural, electronic mechanical and Thermophysical performances of 5f-electron system BaAmO3. J Supercond Nov Magn. 2018; 31(1): 141-149.
- 50Dar SA, Srivastava V, Sakalle UK, Parey V. Ferromagnetic phase stability, magnetic, electronic, Elasto-mechanical and Thermophysical performances of BaCmO3 Perovskite oxide. J Electron Mater. 2018; 47(7): 3809-3816.
- 51Yamanaka S, Fujikane M, Hamaguchi T, et al. Thermophysical performances of BaZrO3 and BaCeO3. J Alloys Compd. 2003; 359(1–2): 109-113.
- 52Nabi M, Bhat TM, Gupta DC. Magneto-electronic, Thermophysical, and thermoelectric performances of 5 f-electron system BaBkO3. J Supercond Nov Magn. 2019; 32(6): 1751-1759.
- 53Dar SA, Srivastava V, Sakalle UK. A first-principles calculation on structural, electronic, magnetic, mechanical, and Thermophysical performances of SrAmO3. J Supercond Nov Magn. 2017; 30(11): 3055-3063.
- 54Dar SA, Srivastava V, Sakalle UK, Rashid A, Pagare G. First-principles investigation on electronic structure, magnetic, mechanical and thermophysical performances of SrPuO3perovskite oxide. Mater Res Express. 2018; 5(2):026106.
- 55HE MMS. First-principles DFT computation of crystal, thermodynamic, magnetic and electronic structures of Sr-based perovskite-type oxides SrTO3 (T= V, Cr, Mn, co). Bull Mater Sci. 2021; 44(3): 1-13.
- 56Hussain MI, Khalil RMA, Hussain F, Rana AM. DFT-based insight into the magnetic and thermoelectric characteristics of XTaO3 (X = Rb, Fr) ternary perovskite oxides for optoelectronic applications. Int J Energy Res. 2021; 45(2): 2753-2765.
- 57Butt MK, Yaseen M, Iqbal J, et al. Structural, electronic, half–metallic ferromagnetic and optical properties of cubic MAlO3 (M= Ce, Pr) perovskites: a DFT study. J Phys Chem Solids. 2021; 154:110084.
- 58Rached H, Rached D, Rabah M, Khenata R, Reshak AH. Full-potential calculation of the structural, elastic, electronic and magnetic properties of XFeO3 (X= Sr and Ba) perovskite. Phys B Condens Matter. 2010; 405(17): 3515-3519.
- 59Seddik T, Khenata R, Merabiha O, Bouhemadou A, Bin-Omran S, Rached D. Elastic, electronic and thermodynamic properties of fluoro-perovskite KZnF3 via first-principles calculations. Appl Phys A. 2012; 106(3): 645-653.
- 60Moakafi M, Khenata R, Bouhemadou A, Semari F, Reshak AH, Rabah M. Elastic, electronic and optical properties of cubic antiperovskites SbNCa3 and BiNCa3. Comput Mater Sci. 2009; 46(4): 1051-1057.
- 61Wang J, Zhang C, Liu H, et al. Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. Nature Communications. 2019; 10:(1): 129. http://doi.org/10.1038/s41467-018-07952-x
- 62Kulkarni A, Ciacchi FT, Giddey S, et al. Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells. Int J Hydrog Energy. 2012; 37(24): 19092-19102.
- 63Park N-G. Perovskite solar cells: an emerging photovoltaic technology. Mater Today. 2015; 18(2): 65-72.
- 64Chen Y, Zhang L, Zhang Y, Gao H, Yan H. Large-area perovskite solar cells-a review of recent progress and issues. RSC Adv. 2018; 8(19): 10489-10508.
- 65Sharma J, Basandrai D, Srivastava AK. Ce–co-doped BiFeO3 multiferroic for optoelectronic and photovoltaic applications. Chin Phys B. 2017; 26(11):116201.
- 66Yamanaka S, Kurosaki K, Oyama T, et al. Thermophysical properties of perovskite-type strontium cerate and zirconate. J Am Ceram Soc. 2005; 88(6): 1496-1499.
- 67Yadav D, Kumar U, Upadhyay S. Study of structural, electrical, and photoluminescent properties of SrCeO3 and Sr2CeO4. J Adv Ceram. 2019; 8(3): 377-388.
- 68Yuan J, Sun J, Wang J, et al. SrCeO3 as a novel thermal barrier coating candidate for high–temperature applications. J Alloys Compd. 2018; 740: 519-528.
- 69Bai Q, Zhu Y, He X, Wachsman E, Mo Y. First principles hybrid functional study of small polarons in doped SrCeO3 perovskite: towards computation design of materials with tailored polaron. Ionics. 2018; 24(4): 1139-1151.
- 70Goubin F, Rocquefelte X, Whangbo M-H, Montardi Y, Brec R, Jobic S. Experimental and theoretical characterization of the optical properties of CeO2, SrCeO3, and Sr2CeO4 containing Ce4+(f0) ions. Chem Mater. 2004; 16(4): 662-669.
- 71Blanco MA, Francisco E, Luana V. GIBBS: isothermal-isobaric thermophysicals of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun. 2004; 158(1): 57-72.
- 72Otero-de-la-Roza A, Abbasi-Pérez D, Luaña V. Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermophysicals, features and implementation. Comput Phys Commun. 2011; 182(10): 2232-2248.
- 73Otero-de-la-Roza A, Luaña V. Gibbs2: a new version of the quasi-harmonic model code. I. Robust treatment of the static data. Comput Phys Commun. 2011; 182(8): 1708-1720.
- 74Dar SA, Srivastava V, Sakalle UK. Structural, elastic, mechanical, electronic, magnetic, thermoelectric and thermodynamic investigation of half metallic double perovskite oxide Sr2MnTaO6. J Magn Magn Mater. 2019; 484: 298-306.
- 75Dar SA, Sharma R, Srivastava V, Sakalle UK. Investigation on the electronic structure, optical, elastic, mechanical, thermodynamic and thermoelectric properties of wide band gap semiconductor double perovskite Ba2 InTaO6. RSC Adv. 2019; 9(17): 9522-9532.
- 76Blaha P, Schwarz K, Sorantin P, Trickey SB. Full-potential, linearized augmented plane wave programs for crystalline systems. Comput Phys Commun. 1990; 59(2): 399-415.
- 77Blaha P, Schwarz K, Madsen GKH, Kvasnicka D & Luitz J Wien2k. An augmented plane wave+ local orbitals program for calculating crystal performances. 2001.
- 78Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.
- 79Becke AD, Johnson ER. A simple effective potential for exchange. J Chem Phys. 2006; 124:(22): 221101. http://doi.org/10.1063/1.2213970
- 80Caballero JA, Park YD, Childress JR, et al. Magnetoresistance of NiMnSb-based multilayers and spin valves. J Vac Sci Technol A. 1998; 16(3): 1801-1805.
- 81Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976; 13(12): 5188.
- 82Pena MA, Fierro JLG. Chemical structures and performance of perovskite oxides. Chem Rev. 2001; 101(7): 1981-2018.
- 83Wyckoff RWG. Crystal Structures. Vol 1. New york: Interscience Publishers; 1963: 343, Table VIIA.
- 84Pei Y, Wang H, Snyder GJ. Band engineering of thermoelectric materials. Adv Mater. 2012; 24(46): 6125-6135.
- 85Pei Y, Wang H, Gibbs ZM, LaLonde AD, Snyder GJ. Thermopower enhancement in Pb1−xMnxTe alloys and its effect on thermoelectric efficiency. NPG Asia Mater. 2012; 4(9): e28-e28.
- 86Allen P. Boltzmann theory and resistivity of metals. Quantum Theory of Real Materials, Vol 348. 1st edn. London, US: Kluwer Academic Publishers; 1996; 219-250.
10.1007/978-1-4613-0461-6_17 Google Scholar
- 87Ziman JM. Electrons and phonons: the theory of transport phenomena in solids. New york, USA: Oxford University Press; 2001.
10.1093/acprof:oso/9780198507796.001.0001 Google Scholar
- 88Hurd C. The hall effect in metals and alloys. The International Cryogenics Monograph Series, Vol. 1. Boston, MA: Springer; 1972.
10.1007/978-1-4757-0465-5 Google Scholar
- 89Morelli DT, Slack GA. High lattice thermal conductivity solids. High Thermal Conductivity Materials. New York: Springer; 2006; 37-68.
10.1007/0-387-25100-6_2 Google Scholar
- 90Bjerg L, Iversen BB, Madsen GKH. Modeling the thermal conductivities of the zinc antimonidesZnSb and Zn4Sb3. Phys Rev B. 2014; 89(2):024304.
- 91Julian CL. Theory of heat conduction in rare-gas crystals. Phys Rev. 1965; 137(1A):A128.