Optoelectronic and photo-charging properties of CH3NH3PbI3/LiFePO4 system
Yuhan Qiang
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing, China
Search for more papers by this authorCorresponding Author
Lei Zhang
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing, China
Correspondence
Lei Zhang, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
Email: [email protected]
Search for more papers by this authorShaofeng Shao
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
Search for more papers by this authorJingfa Li
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
Search for more papers by this authorYuhan Qiang
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing, China
Search for more papers by this authorCorresponding Author
Lei Zhang
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing, China
Correspondence
Lei Zhang, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
Email: [email protected]
Search for more papers by this authorShaofeng Shao
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
Search for more papers by this authorJingfa Li
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
Search for more papers by this authorFunding information: National Natural Science Foundation of China, Grant/Award Number: 51702165
Summary
The photo-responsive capability of lithium battery materials is a prerequisite to realize new-generation light-weight photo-rechargeable batteries. However, the photo-charging property is not available for common battery electrode materials such as LiFePO4. In this manuscript, we provide evidence that the halide perovskite material CH3NH3PbI3 is able to activate the photo-charging properties of the lithium-ion battery electrode material LiFePO4. The photoelectrochemical measurement demonstrates that the photo-responsive property of the CH3NH3PbI3/LiFePO4 composite is significantly improved; the photo-induced signals are neither observed in the individual halide perovskite nor the lithium battery material tested under the same condition. The first-principles calculations reveal strong interactions between the CH3NH3PbI3 layer and the LiFePO4 layer via the coordination between the Lewis acid and Lewis base species; this forms a heterostructure that assists the photo-charging process. We propose that the combination of halide perovskite materials and lithium battery electrode materials is a viable way to achieve light-weight photo-batteries. Suggestions to address the stability and voltage issues of the halide perovskite-based hybrid systems toward the photo-battery application are provided. This study facilitates the fundamental understanding of the integrated photo-rechargeable battery materials and highlights the importance of halide perovskite materials for the lithium-ion and photo-rechargeable batteries.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Ahmad S, George C, Beesley DJ, Baumberg JJ, De Volder M. Photo-rechargeable organo-halide perovskite batteries. Nano Lett. 2018; 18(3): 1856-1862. https://doi.org/10.1021/acs.nanolett.7b05153.
- 2Li N, Wang Y, Tang D, Zhou H. Integrating a photocatalyst into a hybrid lithium-sulfur battery for direct storage of solar energy. Angew Chemie - Int Ed. 2015; 54(32): 9271-9274. https://doi.org/10.1002/anie.201503425.
- 3Li W, Fu H-CC, Zhao Y, He J-HH, Jin S. 14.1% efficient monolithically integrated solar flow battery. Chemistry. 2018; 4(11): 2644-2657. https://doi.org/10.1016/j.chempr.2018.08.023.
- 4Nguyen O, Courtin E, Sauvage F, Krins N, Sanchez C, Laberty-Robert C. Shedding light on the light-driven lithium ion de-insertion reaction: towards the design of a photo-rechargeable battery. J Mater Chem A. 2017; 5(12): 5927-5933. https://doi.org/10.1039/c7ta00493a.
- 5Li Q, Liu Y, Guo S, Zhou H. Solar energy storage in the rechargeable batteries. Nano Today. 2017; 16: 46-60. https://doi.org/10.1016/j.nantod.2017.08.007.
- 6Lee J-YJ-S, Lee C, Lee J-YJ-S, Ryu J, Ryu W. Polyoxometalate as a nature-inspired bifunctional catalyst for lithium-oxygen batteries. ACS Catal. 2018; 8(8): 7213-7221. https://doi.org/10.1021/acscatal.8b01103.
- 7Paolella A, Faure C, Bertoni G, et al. Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries. Nat Commun. 2017; 8(1):14643. https://doi.org/10.1038/ncomms14643.
- 8Liu L, Lu F, Tian J. Electronic properties of graded Ga1-xAlxN superlattice nanowires photocathode: first-principles. Int J Energy Res. 2020; 44(13): 10768-10777. https://doi.org/10.1002/er.5723.
- 9Zhang L, Qiang Y, Yu F. Halide perovskite nanotube toward energy applications: a first-principles investigation. Int J Energy Res. 2020; 44(7): 5412-5424. https://doi.org/10.1002/er.5291.
- 10Zhang L, Chen Z. Polyoxometalates: tailoring metal oxides in molecular dimension toward energy applications. Int J Energy Res. 2020; 44(5): 3316-3346. https://doi.org/10.1002/er.5124.
- 11Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science. 2016; 354(6309): 206. https://doi.org/10.1126/science.aah5557.
- 12Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2014; 342(2013): 341-344. https://doi.org/10.1126/science.1243982.
10.1126/science.1243982 Google Scholar
- 13Yang WS, Park B-W, Jung EH, Jeon NJ. Iodide management in formamidinium-lead-halide – based perovskite layers for efficient solar cells. Science. 2017; 356(6345): 1376-1379. https://doi.org/10.1126/science.aan2301.
- 14Sahli F, Werner J, Kamino BA, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat Mater. 2018; 17(9): 820-826. https://doi.org/10.1038/s41563-018-0115-4.
- 15Wang Q, Yang T, Wang H, et al. Morphological and chemical tuning of lead halide perovskite mesocrystals as long-life anode materials in lithium-ion batteries. Cryst Eng Comm. 2019; 21(6): 1048-1059. https://doi.org/10.1039/C8CE01779D.
- 16Suzuki A, Oku T. First-principles calculation study of electronic structures of alkali metals (Li, K, Na and Rb)-incorporated formamidinium lead halide perovskite compounds. Appl Surf Sci. 2019; 483: 912-921. https://doi.org/10.1016/j.apsusc.2019.04.049.
- 17Shi E, Gao Y, Finkenauer BP, Akriti A, Coffey AH, Dou L. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem Soc Rev. 2018; 47(16): 6046-6072. https://doi.org/10.1039/C7CS00886D.
- 18Wang Z, Lin Q, Chmiel FP, Sakai N, Herz LM, Snaith HJ. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat Energy. 2017; 2(9):17135. https://doi.org/10.1038/nenergy.2017.135.
- 19Jia C, Li H, Meng X, Li H. CsPbX3/Cs4PbX6 core/shell perovskite nanocrystals. Chem Commun. 2018; 54(49): 6300-6303. https://doi.org/10.1039/C8CC02802H.
- 20Zhang L, Wu B. Dye-sensitization enhances photoelectrochemical performance of halide perovskite CH3NH3PbI3 photoanode in aqueous solution. Dye Pigment. 2020; 173:108006. https://doi.org/10.1016/j.dyepig.2019.108006.
- 21Grancini G, Nazeeruddin MK. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat Rev Mater. 2019; 4(1): 4-22. https://doi.org/10.1038/s41578-018-0065-0.
- 22Gao P, Bin Mohd Yusoff AR, Nazeeruddin MK. Dimensionality engineering of hybrid halide perovskite light absorbers. Nat Commun. 2018; 9(1): 5028. https://doi.org/10.1038/s41467-018-07382-9.
- 23Li W, Zhang X, Lu G. Unraveling photoexcitation dynamics at “dots-in-a-perovskite” heterojunctions from first-principles. J Mater Chem A. 2019; 7(30): 18012-18019. https://doi.org/10.1039/C9TA04871E.
- 24Leijtens T, Eperon GE, Noel NK, Habisreutinger SN, Petrozza A, Snaith HJ. Stability of metal halide perovskite solar cells. Adv Energy Mater. 2015; 5(20): 1-23. https://doi.org/10.1002/aenm.201500963.
- 25Müller C, Glaser T, Plogmeyer M, et al. Water infiltration in methylammonium lead iodide perovskite: fast and inconspicuous. Chem Mater. 2015; 27(22): 7835-7841. https://doi.org/10.1021/acs.chemmater.5b03883.
- 26Sun P-P, Chi W-J, Li Z-S. Effects of water molecules on the chemical stability of MAGeI3 perovskite explored from a theoretical viewpoint. Phys Chem Chem Phys. 2016; 18(35): 24526-24536. https://doi.org/10.1039/C6CP04344E.
- 27Jung Y-KK, Butler KT, Walsh A. Halide perovskite heteroepitaxy: bond formation and carrier confinement at the PbS-CsPbBr3 interface. J Phys Chem C. 2017; 121(49): 27351-27356. https://doi.org/10.1021/acs.jpcc.7b10000.
- 28Frost JM, Butler KT, Walsh A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2014; 2(8):081506. https://doi.org/10.1063/1.4890246.
- 29Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter. 2002; 14(11): 2717-2744. https://doi.org/10.1088/0953-8984/14/11/301.
- 30Tkatchenko A, Scheffler M. Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett. 2009; 102(7):073005. https://doi.org/10.1103/PhysRevLett.102.073005.
- 31Wang L, Zhou F, Meng YS, Ceder G. First-principles study of surface properties of LiFePO4: surface energy, structure, Wulff shape, and surface redox potential. Phys Rev B - Condens Matter Mater Phys. 2007; 76(16): 1-11. https://doi.org/10.1103/PhysRevB.76.165435.
10.1103/PhysRevB.76.165435 Google Scholar
- 32Feng X, Chen R, Nan Z-AA, et al. Perfection of perovskite grain boundary passivation by Eu-Porphyrin complex for overall-stable perovskite solar cells. Adv Sci. 2019; 6(5):1802040. https://doi.org/10.1002/advs.201802040.
10.1002/advs.201802040 Google Scholar
- 33Andriamiadamanana C, Sagaidak I, Bouteau G, Davoisne C, Laberty-Robert C, Sauvage F. Light-induced charge separation in mixed electronic/ionic semiconductor driving lithium-ion transfer for photo-rechargeable electrode. Adv Sustain Syst. 2018; 2(5): 1700166. https://doi.org/10.1002/adsu.201700166.
- 34Zhang L, Wang Q. Binding mode of malonic acid on IrO2 surface. Struct Chem. 2019; 60(1): 11-16. https://doi.org/10.26902/JSC_id38707.
- 35Zhang L, Xu K. Aggregation-enhanced adsorption and optoelectronic performance of metal-free organic dye on anatase (101) toward water-splitting purpose: a first-principles investigation. Appl Surf Sci. 2020; 502:144139. https://doi.org/10.1016/j.apsusc.2019.144139.
- 36Zhou LJ, Hou ZF, Wu LM. First-principles study of lithium adsorption and diffusion on graphene with point defects. J Phys Chem C. 2012; 116(41): 21780-21787. https://doi.org/10.1021/jp304861d.
- 37Xu G, Zhong K, Zhang J, Huang Z. First-principles investigation of the electronic and Li-ion diffusion properties of LiFePO4 by sulfur surface modification. J Appl Phys. 2014; 116(6):063703. https://doi.org/10.1063/1.4892018.
- 38Wang Y, Feng ZS, Chen JJ, Zhang C, Jin X, Hu J. First principles study on electronic properties and occupancy sites of molybdenum doped into LiFePO4. Solid State Commun. 2012; 152(16): 1577-1580. https://doi.org/10.1016/j.ssc.2012.05.018.
- 39Manser JS, Saidaminov MI, Christians JA, Bakr OM, Kamat PV. Making and breaking of lead halide perovskites. Acc Chem Res. 2016; 49(2): 330-338. https://doi.org/10.1021/acs.accounts.5b00455.
- 40Schulz P, Cahen D, Kahn A. Halide perovskites: is it all about the interfaces? Chem Rev. 2019; 119(5): 3349-3417. https://doi.org/10.1021/acs.chemrev.8b00558.
- 41Vicente N, Garcia-Belmonte G. Methylammonium lead bromide perovskite battery anodes reversibly host high li-ion concentrations. J Phys Chem Lett. 2017; 8(7): 1371-1374. https://doi.org/10.1021/acs.jpclett.7b00189.
- 42Kostopoulou A, Vernardou D, Savva K, Stratakis E. All-inorganic lead halide perovskite nanohexagons for high performance air-stable lithium batteries. Nanoscale. 2019; 11(3): 882-889. https://doi.org/10.1039/C8NR10009H.
- 43Jiang Q, Zeng X, Wang N, Xiao Z, Guo Z, Lu J. Electrochemical lithium doping induced property changes in halide perovskite CsPbBr3 crystal. ACS Energy Lett. 2018; 3(1): 264-269. https://doi.org/10.1021/acsenergylett.7b01230.
- 44Kong L, Chen X, Li B-QQ, et al. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Adv Mater. 2018; 30(2):1705219. https://doi.org/10.1002/adma.201705219.
- 45Zhang L, Wu B, Li J. Understanding interactions between lead iodide perovskite surfaces and lithium polysulfide toward new-generation integrated solar-powered lithium battery: an ab initio investigation. J Phys Chem C. 2019; 123(1): 82-90. https://doi.org/10.1021/acs.jpcc.8b09114.
- 46Vicente N, Bresser D, Passerini S, Garcia-Belmonte G. Probing the 3-step lithium storage mechanism in CH3NH3PbBr3 perovskite electrode by Operando -XRD analysis. Chem Electro Chem. 2019; 6(2): 456-460. https://doi.org/10.1002/celc.201801291.
- 47Jiang Q, Chen M, Li J, et al. Electrochemical doping of halide perovskites with ion intercalation. ACS Nano. 2017; 11(1): 1073-1079. https://doi.org/10.1021/acsnano.6b08004.
- 48Li S, Lei D, Ren W, et al. Water-resistant perovskite nanodots enable robust two-photon lasing in aqueous environment. Nat Commun. 2020; 11(1): 1192. https://doi.org/10.1038/s41467-020-15016-2.
- 49Crespo-Quesada M, Pazos-Outón LM, Warnan J, Kuehnel MF, Friend RH, Reisner E. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat Commun. 2016; 7(1): 12555. https://doi.org/10.1038/ncomms12555.
- 50Kim IS, Pellin MJ, Martinson ABFF. Acid-compatible halide perovskite photocathodes utilizing atomic layer deposited TiO2 for solar-driven hydrogen evolution. ACS Energy Lett. 2019; 4(1): 293-298. https://doi.org/10.1021/acsenergylett.8b01661.
- 51Zhang L, Liu X, Li J, McKechnie S. Interactions between molecules and perovskites in halide perovskite solar cells. Sol Energy Mater Sol Cells. 2018; 175: 1-19. https://doi.org/10.1016/j.solmat.2017.09.038.
- 52Thouin F, Valverde-Chávez DA, Quarti C, et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat Mater. 2019; 18(4): 349-356. https://doi.org/10.1038/s41563-018-0262-7.
- 53Connor BA, Leppert L, Smith MD, Neaton JB, Karunadasa HI. Layered halide double perovskites: dimensional reduction of Cs2AgBiBr6. J Am Chem Soc. 2018; 140(15): 5235-5240. https://doi.org/10.1021/jacs.8b01543.
- 54Nishida J, Breen JP, Lindquist KP, Umeyama D, Karunadasa HI, Fayer MD. Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy. J Am Chem Soc. 2018; 140(31): 9882-9890. https://doi.org/10.1021/jacs.8b03787.
- 55Srimath Kandada AR, Silva C. Exciton polarons in two-dimensional hybrid metal-halide perovskites. J Phys Chem Lett. 2020; 11(9): 3173-3184. https://doi.org/10.1021/acs.jpclett.9b02342.
- 56Pandey P, Sharma N, Panchal RA, Gosavi SW, Ogale S. Realization of high capacity and cycling stability in Pb-free A2CuBr4 (A=CH3NH3/Cs, 2D/3D) perovskite-based li-ion battery anodes. ChemSusChem. 2019; 12(16): 3742-3746. https://doi.org/10.1002/cssc.201900959.
- 57Krishna A, Gottis S, Nazeeruddin MK, Sauvage F. Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells? Adv Funct Mater. 2019; 29(8):1806482. https://doi.org/10.1002/adfm.201806482.
- 58Liu B, Long M, Cai M, Ding L, Yang J. Interfacial charge behavior modulation in 2D/3D perovskite heterostructure for potential high-performance solar cells. Nano Energy. 2019; 59: 715-720. https://doi.org/10.1016/j.nanoen.2019.02.069.
- 59Zhang L, Lin S. Dimensional tailoring of halide perovskite: a case study on Cs4PbBr6/CsPbBr3 hybrid with molecular halide perovskite. Sol Energy Mater Sol Cells. 2020; 204:110237. https://doi.org/10.1016/j.solmat.2019.110237.
- 60Stegmaier S, Voss J, Reuter K, Luntz AC. Li+defects in a solid-state li ion battery: theoretical insights with a Li3OCl electrolyte. Chem Mater. 2017; 29(10): 4330-4340. https://doi.org/10.1021/acs.chemmater.7b00659.
- 61Baek S-W, Honma I, Kim J, Rangappa D. Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery. J Power Sources. 2017; 343: 22-29. https://doi.org/10.1016/j.jpowsour.2017.01.030.
- 62Dirin DN, Dreyfuss S, Bodnarchuk MI, et al. Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J Am Chem Soc. 2014; 136(18): 6550-6553. https://doi.org/10.1021/ja5006288.
- 63Chung I, Lee B, He J, Chang RPH, Kanatzidis MG. All-solid-state dye-sensitized solar cells with high efficiency. Nature. 2012; 485(7399): 486-489. https://doi.org/10.1038/nature11067.
- 64Giordano F, Abate A, Correa Baena JP, et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat Commun. 2016; 7(1): 10379. https://doi.org/10.1038/ncomms10379.
- 65Thimmappa R, Paswan B, Gaikwad P, et al. Chemically chargeable photo battery. J Phys Chem C. 2015; 119(25): 14010-14016. https://doi.org/10.1021/acs.jpcc.5b02871.
- 66Zhang W, Eperon GE, Snaith HJ. Metal halide perovskites for energy applications. Nat Energy. 2016; 1(6): 16048. https://doi.org/10.1038/nenergy.2016.48.
- 67Jaffe A, Karunadasa HI. Lithium cycling in a self-assembled copper chloride–polyether hybrid electrode. Inorg Chem. 2014; 53(13): 6494-6496. https://doi.org/10.1021/ic500860t.
- 68Wu J, Li X, Zhao Y, et al. Interface engineering in solid state Li metal batteries by quasi-2D hybrid perovskites. J Mater Chem A. 2018; 6(42): 20896-20903. https://doi.org/10.1039/C8TA07643J.
- 69Bai Y, Chen H, Xiao S, et al. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv Funct Mater. 2016; 26(17): 2950-2958. https://doi.org/10.1002/adfm.201505215.
- 70Han B, Stoerzinger KA, Tileli V, Gamalski AD, Stach EA, Shao-Horn Y. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution. Nat Mater. 2017; 16(1): 121-126. https://doi.org/10.1038/nmat4764.
- 71Quarti C, De Angelis F, Beljonne D. Influence of surface termination on the energy level alignment at the CH3NH3PbI3 perovskite/C60 interface. Chem Mater. 2017; 29(3): 958-968. https://doi.org/10.1021/acs.chemmater.6b03259.