Preparation of MC–CuS–PGr/PPy Nanocomposite Films via Strong Interfacial Interactions as a Battery-Type Electrode
Sheng Gu
College of Engineering and Technology, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorShu Dong
Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Search for more papers by this authorXue Wang
School of Engineering, Zhejiang A&F University, Hangzhou, 311300 China
Search for more papers by this authorXiaolong Shi
College of Engineering and Technology, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorCorresponding Author
Guoqi Xu
College of Engineering and Technology, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorCorresponding Author
Lihai Wang
College of Engineering and Technology, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorSheng Gu
College of Engineering and Technology, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorShu Dong
Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Search for more papers by this authorXue Wang
School of Engineering, Zhejiang A&F University, Hangzhou, 311300 China
Search for more papers by this authorXiaolong Shi
College of Engineering and Technology, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorCorresponding Author
Guoqi Xu
College of Engineering and Technology, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorCorresponding Author
Lihai Wang
College of Engineering and Technology, Northeast Forestry University, Harbin, 150040 China
Search for more papers by this authorAbstract
Flexible energy storage devices are an essential step towards the production of wearable and flexible electronic products. However, the design of flexible electrodes with excellent electrochemical performance still faces enormous challenges. This work reports a fabrication method for flexible electrodes. Specifically, the formation of MC-CuS-PGr/PPy nanocomposite films was driven by different interactions (including hydrogen bonds and π–π conjugated bonds). Nanocellulose@carbon nanotube (MC) acted as a flexible substrate and was encapsulated with polypyrrole (PPy), a hydrogen bond active site carrier. MC and PPy were interconnected through hydrogen bonds, and pencil graphite (PGr) was a secondary conductive network that served as a separating layer between CuS and PPy. Driven by the interaction, the nanocomposite film was a stable combination. The strong macromolecular interactions among MC, PPy, and PGr enhance conductivity and cycle life of this nanocomposite films. The water-based hybrid cell was assembled based on an MC-CuS-PGr/PPy nanocomposite film, which exhibited high cyclability (capacity retention of 94.3% after 2000 cycles at 1 Ag−1) and provided an energy density of Wh kg−1 (at a power density of 549.8 W kg−1). This research provides a new idea for preparing new flexible electrodes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1J. Zou, M. Zhang, J. Huang, J. Bian, Y. Jie, M. Willander, X. Cao, N. Wang, Z. L. Wang, Adv. Mater. 2018, 8, 1702671.
10.1002/aenm.201702671 Google Scholar
- 2W. Liu, M.-S. Song, B. Kong, Y. Cui, Adv. Mater. 2017, 29, 1603436.
- 3J. A. Rogers, T. Someya, Y. Huang, Science 2010, 327, 1603.
- 4J. Yun, C. Song, H. Lee, H. Park, Y. R. Jeong, J. W. Kim, S. W. Jin, S. Y. Oh, L. Sun, G. Zi, J. S. Ha, Nano Energy 2018, 49, 644.
- 5L. Zhi, W. Zhang, L. Dang, J. Sun, F. Shi, H. Xu, Z. Liu, Z. Lei, J. Power Sources 2018, 387, 108.
- 6D. Son, J. Kang, O. Vardoulis, Y. Kim, N. Matsuhisa, J. Y. Oh, J. W. To, J. Mun, T. Katsumata, Y. Liu, A. F. McGuire, M. Krason, F. Molina-Lopez, J. Ham, U. Kraft, Y. Lee, Y. Yun, J. B. H. Tok, Z. Bao, Nat. Nanotechnol. 2018, 13, 1057.
- 7Z. Liu, J. Xu, D. Chen, G. Shen, Chem. Soc. Rev. 2015, 44, 161.
- 8Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, Adv. Mater. 2013, 25, 2326.
- 9S. K. Pradhan, B. Chakraborty, J. Energy Storage 2020, 32, 101764.
- 10B. Jiang, Y. Qiu, D. Tian, Y. Zhang, X. Song, C. Zhao, M. Wang, X. Sun, H. Huang, C. Zhao, H. Zhou, A. Chen, L. Fan, N. Zhang, Adv. Mater. 2021, 11, 2102995.
- 11B. Jiang, D. Tian, Y. Qiu, X. Song, Y. Zhang, X. Sun, H. Huang, C. Zhao, Z. Guo, L. Fan, N. Zhang, Nano-Micro Lett. 2021, 14, 40.
- 12L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, J. Power Sources 2013, 226, 272.
- 13W. K. Chee, H. N. Lim, Z. Zainal, N. M. Huang, I. Harrison, Y. Andou, J. Phys. Chem. C 2016, 120, 4153.
- 14N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, H. Xia, Adv. Mater. 2017, 29, 1700804.
- 15J. Tao, N. Liu, J. Rao, L. Ding, M. R. A. Bahrani, L. Li, J. Su, Y. Gao, Nanoscale 2014, 6, 15073.
- 16H. Wu, Y. Zhang, W. Yuan, Y. Zhao, S. Luo, X. Yuan, L. Zheng, L. Cheng, J. Mater. Chem. A 2018, 6, 16617.
- 17C. Xu, X. Kong, S. Zhou, B. Zheng, F. Huo, M. Strømme, J. Mater. Chem. A 2018, 6, 24050.
- 18W. He, C. Wang, F. Zhuge, X. Deng, X. Xu, T. Zhai, Nano Energy 2017, 35, 242.
- 19H. Geng, S. F. Kong, Y. Wang, J. Mater. Chem. 2014, 2, 15152.
- 20X. Li, J. Shen, N. Li, M. Ye, J. Power Sources 2015, 282, 194.
- 21L. Wang, X. Zhang, Y. Ma, M. Yang, Y. Qi, J. Phys. Chem. C 2017, 121, 9089.
- 22L. Zhang, Y. Huang, Y. Zhang, W. Fan, T. Liu, ACS Appl. Mater. Interfaces 2015, 7, 27823.
- 23R. Jin, L. Yang, G. Li, G. Chen, J. Mater. Chem. 2015, 3, 10677.
- 24F. Li, J. Wu, Q. Qin, Z. Li, X. Huang, Powder Technol. 2010, 198, 267.
- 25R. BoopathiRaja, M. Parthibavarman, S. Prabhu, R. Ramesh, Mater. Today:. Proc. 2020, 26, 3507.
- 26C. Feng, L. Zhang, Z. Wang, X. Song, K. Sun, F. Wu, G. Liu, J. Power Sources 2014, 269, 550.
- 27J. Zhang, H. Feng, J. Yang, Q. Qin, H. Fan, C. Wei, W. Zheng, ACS Appl. Mater. Interfaces 2015, 7, 21735.
- 28Y.-W. Lee, B.-S. Kim, J. Hong, J. Lee, S. Pak, H.-S. Jang, D. Whang, S. Cha, J. I. Sohn, J. M. Kim, J. Mater. Chem. 2016, 4, 10084.
- 29H. Li, Y. Wang, J. Huang, Y. Zhang, J. Zhao, Electrochim. Acta 2017, 225, 443.
- 30K. V. G. Raghavendra, C. V. V. M. Gopi, R. Vinodh, I. K. Durga, H.-J. Kim, J. Energy Storage 2020, 27, 101148.
- 31Y. You, K. Qu, C. Shi, Z. Sun, Z. Huang, J. Li, M. Dong, Z. Guo, Int. J. Biol. Macromol. 2020, 162, 310.
- 32X. Li, K. Zhou, J. Zhou, J. Shen, M. Ye, J. Mater. Sci. Technol. 2018, 34, 2342.
- 33K.-J. Huang, J.-Z. Zhang, K. Xing, Electrochim. Acta 2014, 149, 28.
- 34S. Peng, L. Fan, C. Wei, X. Liu, H. Zhang, W. Xu, J. Xu, Carbohydr. Polym. 2017, 157, 344.
- 35W. Yao, H. Zhou, Y. Lu, J. Power Sources 2013, 241, 359.
- 36Y. Zhou, H. Xu, N. Lachman, M. Ghaffari, S. Wu, Y. Liu, A. Ugur, K. K. Gleason, B. L. Wardle, Q. M. Zhang, Nano Energy 2014, 9, 176.
- 37B. Song, H. Wei, Z. Wang, X. Zhang, M. Smet, W. Dehaen, Adv. Mater. 2007, 19, 416.
- 38P. Li, Z. Jin, L. Peng, F. Zhao, D. Xiao, Y. Jin, G. Yu, Adv. Mater. 2018, 30, 1800124.
- 39C. Wu, T. Zhou, Y. Du, S. Dou, H. Zhang, L. Jiang, Q. Cheng, Nano Energy 2019, 58, 517.
- 40G.-F. Wang, H. Qin, X. Gao, Y. Cao, W. Wang, F.-C. Wang, H.-A. Wu, H.-P. Cong, S.-H. Yu, Chem 2018, 4, 896.
- 41J. A. F. Gamelas, J. Pedrosa, A. F. Lourenço, P. Mutjé, I. González, G. Chinga-CarrASCo, G. Singh, P. J. T. Ferreira, Micron 2015, 72, 28.
- 42L. Yuan, B. Yao, B. Hu, K. Huo, W. Chen, J. Zhou, Energy Environ. Sci. 2013, 6, 470.
- 43P. Tayeb, A. H. Tayeb, Carbohydr. Polym. 2019, 224, 115149.
- 44D.-C. Wang, H.-Y. Yu, D. Qi, M. Ramasamy, J. Yao, F. Tang, K. C. Tam, Q. Ni, ACS Appl. Mater. Interfaces 2019, 11, 24435.
- 45D.-C. Wang, H.-Y. Yu, D. Qi, Y. Wu, L. Chen, Z. Li, J. Am. Chem. Soc. 2021, 143, 11620.
- 46P. M. Ajayan, L. S. Schadler, C. Giannaris, A. Rubio, Adv. Mater. 2000, 12, 750.
- 47M. Hou, M. Xu, Y. Hu, B. Li, Electrochim. Acta 2019, 313, 245.
- 48P. Liu, X. Wang, H. Li, Synth. Met. 2013, 181, 72.
- 49Z. Wang, P. Tammela, P. Zhang, M. Strömme, L. Nyholm, J. Mater. Chem. 2014, 2, 7711.
- 50M. Saranya, R. Ramachandran, P. Kollu, S. K. Jeong, A. N. Grace, RSC Adv. 2015, 5, 15831.
- 51J. Zhao, D. Liu, C. Gu, M. Zhu, S. O. Ryu, J. Huang, Mater. Chem. Phys. 2018, 217, 102.
- 52J. Zhu, Y. Xu, J. Wang, J. Wang, Y. Bai, X. Du, Phys. Chem. Chem. Phys. 2015, 17, 19885.
- 53D. Yuan, G. Huang, F. Zhang, D. Yin, L. Wang, Electrochim. Acta 2016, 203, 238.
- 54S. Iqbal, A. Bahadur, A. Saeed, K. Zhou, M. Shoaib, M. Waqas, J. Colloid Interface Sci. 2017, 502, 16.
- 55M. Zhang, C. Shao, J. Mu, X. Huang, Z. Zhang, Z. Guo, P. Zhang, Y. Liu, J. Mater. Chem. 2012, 22, 577.
- 56B. Peng, M. Locascio, P. Zapol, S. Li, S. L. Mielke, G. C. Schatz, H. D. Espinosa, Nat. Nanotechnol. 2008, 3, 626.
- 57R. Zhang, Q. Wen, W. Qian, D. S. Su, Q. Zhang, F. Wei, Adv. Mater. 2011, 23, 3387.
- 58Q. Zhao, M. B. Nardelli, J. Bernholc, Phys. Rev. B 2002, 65.
- 59W. Li, X. Zu, Y. Zeng, L. Zhang, Z. Tang, G. Yi, Z. Chen, W. Lin, X. Lin, H. Zhou, J. Xiao, Y. Deng, Nano Energy 2020, 67, 104275.
- 60Y. Song, T.-Y. Liu, X.-X. Xu, D.-Y. Feng, Y. Li, X.-X. Liu, Adv. Funct. Mater. 2015, 25, 4626.
- 61C. Chen, Q. Zhang, T. Ma, W. Fan, J. Nanosci. Nanotechnol. 2017, 17, 2811.
- 62J. Zhu, S. Tang, J. Wu, X. Shi, B. Zhu, X. Meng, Adv. Mater. 2017, 7.
- 63Y. Ma, J. Hao, H. Liu, W. Shi, J. Lian, J. Solid State Chem. 2020, 282, 121088.
- 64T. Liu, J. Liu, L. Zhang, B. Cheng, J. Yu, J. Mater. Sci. Technol. 2020, 47, 113.
- 65J. Zhou, H. Zhao, X. Mu, J. Chen, P. Zhang, Y. Wang, Y. He, Z. Zhang, X. Pan, E. Xie, Nanoscale 2015, 7, 14697.
- 66Y. Zheng, J. Xu, X. Yang, Y. Zhang, Y. Shang, X. Hu, Chem. Eng. J. 2018, 333, 111.
- 67C. Zhou, Y. Zhang, Y. Li, J. Liu, Nano Lett. 2013, 13, 2078.
- 68T. H. Ko, D. Lei, S. Balasubramaniam, M.-K. Seo, Y.-S. Chung, H.-Y. Kim, B.-S. Kim, Electrochim. Acta 2017, 247, 524.
- 69Y. Su, I. Zhitomirsky, Appl. Energy 2015, 153, 48.
- 70H. Fu, Z.-J. Du, W. Zou, H.-Q. Li, C. Zhang, J. Mater. Chem. 2013, 1, 14943.
- 71T. D. Raju, A. Gopalakrishnan, S. Badhulika, J. Alloys Compd. 2020, 845, 156241.
- 72Y. Cui, J. Zhang, G. Li, Y. Sun, G. Zhang, W. Zheng, Chem. Eng. J. 2017, 325, 424.
- 73J. Zhu, T. Feng, X. Du, J. Wang, J. Hu, L. Wei, J. Power Sources 2017, 346, 120.
- 74W. Fu, W. Han, H. Zha, J. Mei, Y. Li, Z. Zhang, E. Xie, Phys. Chem. Chem. Phys. 2016, 18, 24471.