Core–Shell Structure and X-Doped (X = Li, Zr) Comodified O3-NaNi0.5Mn0.5O2: Excellent Electrochemical Performance as Cathode Materials of Sodium-Ion Batteries
Jing Ren
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 China
Search for more papers by this authorRongbin Dang
College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYuqiang Yang
College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorKang Wu
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 China
Search for more papers by this authorYulin Lee
Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ UK
Search for more papers by this authorZhongbo Hu
College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Xiaoling Xiao
College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Min Wang
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 China
Search for more papers by this authorJing Ren
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 China
Search for more papers by this authorRongbin Dang
College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYuqiang Yang
College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorKang Wu
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 China
Search for more papers by this authorYulin Lee
Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ UK
Search for more papers by this authorZhongbo Hu
College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Xiaoling Xiao
College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Min Wang
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 China
Search for more papers by this authorAbstract
O3-NaNi0.5Mn0.5O2 is one of the most promising materials for sodium-ion batteries, which holds advantages of high cost efficiency and environmental friendliness. However, poor cycle stability and inferior rate performance impede their further development because of complex phase transitions. Herein, the successful synthesis of O3-Na0.98X0.02Ni0.5Mn0.5O2@5%Na–Mn–O (X = Li, Zr) ensured excellent rate performance, superior cycle stability by a method of forming and comodifying a core–shell structure with elemental doping. First, a core–shell structure with high-nickel in the core, and high-manganese on the surface improve cycle stability. Second, doping Li and Zr into Na sites allow them to serve as pillars to suppress phase change according to ex situ X-ray diffraction (XRD) observations. Specifically, the capacity retention rates of Na0.98Li0.02Ni0.5Mn0.5O2@5%Na–Mn–O and Na0.98Zr0.02Ni0.5Mn0.5O2@5%Na–Mn–O samples are 61% and 67%, respectively, whereas the pristine (NaNi0.5Mn0.5O2) sample is 52% cycling at a high current density of 3 C. A double modification method is proposed to ensure excellent electrochemical performance of cathode materials.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201901504-sup-0001-SuppData-S1.docx439.8 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature 2000, 407, 496.
- 2P. G. Bruce, B. Scrosati, J. M. Tarascon, Angew. Chem., Int. Ed. 2008, 47, 2930.
- 3J. B. Goodenough, Y. Kim, Chem. Mater. 2010, 22, 587.
- 4C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31.
- 5J. B. Goodenough, K. S. Park, J. Am. Chem. Soc. 2013, 135, 1167.
- 6V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243.
- 7J. Cabana, L. Monconduit, D. Larcher, M. Rosa Palacin, Adv. Mater. 2010, 22, E170.
- 8N. Nitta, F. Wu, J. T. Lee, G. Yushin, Mater. Today 2015, 18, 252.
- 9M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, S. A. Hackney, J. Mater. Chem. 2007, 17, 3112.
- 10K. Xu, Chem. Rev. 2014, 114, 11503.
- 11L. David, R. Bhandavat, G. Singh, ACS Nano 2014, 8, 1759.
- 12S. W. Kim, D. H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater. 2012, 2, 710.
- 13M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Adv. Funct. Mater. 2013, 23, 947.
- 14D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem., Int. Ed. 2015, 54, 3431.
- 15N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.
- 16J.-Y. Hwang, S. T. Myung, Y. K. Sun, Chem. Soc. Rev. 2017, 46, 3529.
- 17B. L. Ellis, L. F. Nazar, Curr. Opin. Solid State Mater. Sci. 2012, 16, 168.
- 18S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Energy Environ. Sci. 2011, 4, 3680.
- 19V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero Gonzalez, T. Rojo, Energy Environ. Sci. 2012, 5, 5884.
- 20V. Palomares, M. Casas-Cabanas, E. Castillo-Martinez, M. H. Han, T. Rojo, Energy Environ. Sci. 2013, 6, 2312.
- 21Y. Li, Z. Yang, S. Xu, L. Mu, L. Gu, Y. S. Hu, H. Li, L. Chen, Adv. Sci. 2015, 2, 1500031.
- 22P. F. Wang, Y. You, Y. X. Yin, Y. S. Wang, L. J. Wan, L. Gu, Y. G. Guo, Angew. Chem., Int. Ed. 2016, 55, 7445.
- 23H. Yoshida, N. Yabuuchi, K. Kubota, I. Ikeuchi, A. Garsuch, M. Schulz-Dobrick, S. Komaba, Chem. Commun. 2014, 50, 3677.
- 24J. Xu, D. H. Lee, R. J. Clement, X. Yu, M. Leskes, A. J. Pell, G. Pintacuda, X. Q. Yang, C. P. Grey, Y. S. Meng, Chem. Mater. 2014, 26, 1260.
- 25D. Carlier, J. H. Cheng, R. Berthelot, M. Guignard, M. Yoncheva, R. Stoyanova, B. J. Hwang, C. Delmas, Dalton Trans. 2011, 40, 9306.
- 26D. Yuan, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang, Y. Cao, Electrochim. Acta 2014, 116, 300.
- 27E. Lee, J. Lu, Y. Ren, X. Luo, X. Zhang, J. Wen, D. Miller, A. DeWahl, S. Hackney, B. Key, D. Kim, M. D. Slater, C. S. Johnson, Adv. Energy Mater. 2014, 4, 1400458.
- 28L. Mu, S. Xu, Y. Li, Y. S. Hu, H. Li, L. Chen, X. Huang, Adv. Mater. 2015, 27, 6928.
- 29P. F. Wang, H. R. Yao, X. Y. Liu, J. N. Zhang, L. Gu, X. Q. Yu, Y. X. Yin, Y. G. Guo, Adv. Mater. 2017, 29, 1700210.
- 30S. Guo, P. Liu, H. Yu, Y. Zhu, M. Chen, M. Ishida, H. Zhou, Angew. Chem., Int. Ed. 2015, 54, 5894.
- 31H. Yu, S. Guo, Y. Zhu, M. Ishida, H. Zhou, Chem. Commun. 2014, 50, 457.
- 32S. M. Oh, S. T. Myung, J. Y. Hwang, B. Scrosati, K. Amine, Y. K. Sun, Chem. Mater. 2014, 26, 6165.
- 33D. D. Yuan, Y. X. Wang, Y. L. Cao, X. P. Ai, H. X. Yang, ACS Appl. Mater. Interfaces 2015, 7, 8585.
- 34C. Zhang, R. Gao, L. Zheng, Y. Hao, X. Liu, ACS Appl. Mater. Interfaces 2018, 10, 10819.
- 35W. L. Pang, X. H. Zhang, J. Z. Guo, J. Y. Li, X. Yan, B. H. Hou, H. Y. Guan, X. L. Wu, J. Power Sources 2017, 356, 80.
- 36Y. Liu, X. Fang, A. Zhang, C. Shen, Q. Liu, H. A. Enaya, C. Zhou, Nano Energy 2016, 27, 27.
- 37H. H. Sun, J. Y. Hwang, C. S. Yoon, A. Heller, C. B. Mullins, ACS Nano 2018, 12, 12912.
- 38Y. K. Sun, B. R. Lee, H. J. Noh, H. Wu, S. T. Myung, K. Amine, J. Mater. Chem. 2011, 21, 10108.
- 39Z. Sun, D. Wang, Y. Fan, L. Jiao, F. Li, T. Wu, D. Han, L. Niu, RSC Adv. 2016, 6, 103747.
- 40Q. C. Wang, J. K. Meng, X. Y. Yue, Q. Q. Qiu, Y. Song, X. J. Wu, Z. W. Fu, Y. Y. Xia, Z. Shadike, J. Wu, X. Q. Yang, Y. N. Zhou, J. Am. Chem. Soc. 2019, 141, 840.
- 41Q. Li, R. Dang, M. Chen, Y. Lee, Z. Hu, X. Xiao, ACS Appl. Mater. Interfaces 2018, 10, 17850.
- 42J. Y. Hwang, T. Y. Yu, Y. K. Sun, J. Mater. Chem. A 2018, 6, 16854.
- 43S. Bao, S. H. Luo, Z. Y. Wang, S. X. Yan, Q. Wang, J. Y. Li, J. Power Sources 2018, 396, 404.
- 44S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa, I. Nakai, Inorg. Chem. 2012, 51, 6211.
- 45P. F. Wang, Y. You, Y. X. Yin, Y. G. Guo, J. Mater. Chem. A 2016, 4, 17660.