Nanodiamond-Based Separators for Supercapacitors Realized on Paper Substrates
Giuseppina Polino
CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Search for more papers by this authorAlessandro Scaramella
CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Search for more papers by this authorValerio Manca
CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Search for more papers by this authorElena Palmieri
Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
Search for more papers by this authorEmanuela Tamburri
Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
Search for more papers by this authorSilvia Orlanducci
Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
Search for more papers by this authorCorresponding Author
Francesca Brunetti
CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Search for more papers by this authorGiuseppina Polino
CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Search for more papers by this authorAlessandro Scaramella
CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Search for more papers by this authorValerio Manca
CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Search for more papers by this authorElena Palmieri
Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
Search for more papers by this authorEmanuela Tamburri
Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
Search for more papers by this authorSilvia Orlanducci
Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
Search for more papers by this authorCorresponding Author
Francesca Brunetti
CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Search for more papers by this authorAbstract
In response to the request for sustainable high performance energy storage devices, a significant interest is focused on developing environmentally friendly supercapacitors. In this context, cellulose-based substrates for energy storage devices can be well-engineered, lightweight, safe, thin, and flexible. Herein, a scalable, low-cost, and easy-to-process approach for the preparation of supercapacitors using large area techniques like spray and blade coating is presented. Following a green strategy, all components are chosen or formulated in water-based dispersions. Symmetric supercapacitors using common copy paper and electronic paper as the substrate, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as electrodes, are realized and investigated. The novelty of this work consists of the use of composites based on detonation nanodiamonds (DNDs) and hydroxypropyl cellulose (HPC) as a solid-state electrolyte and separator. Devices with solution electrolyte using the same HPC + DND composite but with the addition of sodium sulfate are prepared. The performance obtained using solid electrolyte (HPC + DNDs) and liquid electrolyte (HPC + DNDs + Na2SO4) on both substrates is comparable in terms of specific capacitance: ≈0.13 – 0.52 F g−1 for (HPC + DNDs) and ≈0.35 – 0.82 F g−1 for (HPC + DNDs + Na2SO4), with power density in the range of ≈19 – 24 μW cm−2.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201901233-sup-0001-SuppData-S1.docx825.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. T. Vicente, A. Araújo, D. Gaspar, L. Santos, A. C. Marques, M. J. Mendes, L. Pereira, E. Fortunato, R. Martins, in Nanostructured Solar Cells, InTech 2017, https://doi.org/10.5772/66695.
- 2S. Kim, A. Georgiadis, M. Tentzeris, S. Kim, A. Georgiadis, M. M. Tentzeris, Sensors 2018, 18, 1958.
- 3S. Castro-Hermosa, J. Dagar, A. Marsella, T. M. Brown, IEEE Electron Device Lett. 2017, 38, 1278.
- 4Q. Cheng, D. Ye, W. Yang, S. Zhang, H. Chen, C. Chang, L. Zhang, ACS Sustain. Chem. Eng. 2018, 6, 8040.
- 5F. Arduini, S. Cinti, V. Caratelli, L. Amendola, G. Palleschi, D. Moscone, Biosens. Bioelectron. 2019, 126, 346.
- 6H. Liu, R. M. Crooks, Anal. Chem. 2012, 84, 2528.
- 7Z. Wang, P. Tammela, M. Strømme, L. Nyholm, Adv. Energy Mater. 2017, 7, 1700130.
- 8F. Sharifi, S. Ghobadian, F. R. Cavalcanti, N. Hashemi, Renew. Sustain. Energy Rev. 2015, 52, 1453.
- 9T. H. Nguyen, A. Fraiwan, S. Choi, Biosens. Bioelectron. 2014, 54, 640.
- 10F. Brunetti, A. Operamolla, S. Castro-Hermosa, G. Lucarelli, V. Manca, G. M. Farinola, T. M. Brown, Adv. Funct. Mater. 2019, 1806798.
- 11J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei, C. M. Li, J. Power Sources 2018, 401, 213.
- 12W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E. E. Kwon, Nano Energy 2018, 52, 441.
- 13W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Adv. Sci. 2017, 4, 1600539.
- 14Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Int. J. Hydrog. Energy 2009, 34, 4889.
- 15W. Gu, G. Yushin, Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 424.
- 16V. N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, Nat. Nanotechnol. 2012, 7, 11.
- 17M. Angjellari, E. Tamburri, L. Montaina, M. Natali, D. Passeri, M. Rossi, M. L. Terranova, Mater. Des. 2017, 119, 12.
- 18G. Reina, S. Orlanducci, E. Tamburri, R. Matassa, M. Rossi, M. L. Terranova, Phys. Status Solidi Curr. Top. Solid State Phys. 2016, 13, 972.
- 19P. Barbini, M. Angjellari, S. Gay, S. Orlanducci, M. L. Terranova, E. Tamburri, M. Rossi, D. Savi, in IEEE NANO 2015 15th Int. Conf. on Nanotechnology, IEEE, Rome, Italy 2015, pp. 916–919.
- 20E. Tamburri, V. Guglielmotti, R. Matassa, S. Orlanducci, S. Gay, G. Reina, M. L. Terranova, D. Passeri, M. Rossi, J. Mater. Chem. C 2014, 2, 3703.
- 21E. Tamburri, V. Guglielmotti, S. Orlanducci, M. L. Terranova, D. Sordi, D. Passeri, R. Matassa, M. Rossi, Polymer 2012, 53, 4045.
- 22G. Reina, S. Orlanducci, E. Tamburri, M. L. Terranova, AIP Conf. Proc. 2014, 1603, 93.
- 23A. Ahnood, H. Meffin, D. J. Garrett, K. Fox, K. Ganesan, A. Stacey, N. V. Apollo, Y. T. Wong, S. G. Lichter, W. Kentler, O. Kavehei, U. Greferath, K. A. Vessey, M. R. Ibbotson, E. L. Fletcher, A. N. Burkitt, S. Prawer, Adv. Biosyst. 2017, 1, 1.
- 24K. Sato, Y. Tominaga, Y. Hotta, H. Shibuya, M. Sugie, T. Saruyama, Adv. Powder Technol. 2018, 29, 972.
- 25H. Etemadi, R. Yegani, V. Babaeipour, Diam. Relat. Mater. 2016, 69, 166.
- 26L. Schmidlin, V. Pichot, M. Comet, S. Josset, P. Rabu, D. Spitzer, Diam. Relat. Mater. 2012, 22, 113.
- 27A. N. Zhukov, F. R. Gareeva, A. E. Aleksenskii, A. Y. Vul’, Colloid J. 2010, 72, 640.
- 28Y. Y. Hui, C. L. Cheng, H. C. Chang, J. Phys. D Appl. Phys. 2010, 43, 374021.
- 29V. N. Postnov, O. V Rodinkov, L. N. Moskvin, A. G. Novikov, A. S. Bugaichenko, O. A. Krokhina, Russ. J. Gen. Chem. 2017, 87, 2754.
- 30F. Gareeva, N. Petrova, O. Shenderova, A. Zhukov, Colloids Surfaces A Physicochem. Eng. Asp. 2014, 440, 202.
- 31C. J. Zhang, T. M. Higgins, S. H. Park, S. E. O'Brien, D. Long, J. N. Coleman, V. Nicolosi, Nano Energy 2016, 28, 495.
- 32V. L. Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, P. M. Ajayan, Proc. Natl. Acad. Sci. 2007, 104, 13574.
- 33J. Ho, T. R. Jow, S. Boggs, IEEE Electr. Insul. Mag. 2010, 26, 20.
- 34L. Hu, H. Wu, Y. Cui, Appl. Phys. Lett. 2010, 96, 183502.
- 35S. Leijonmarck, A. Cornell, G. Lindbergh, L. Wågberg, J. Mater. Chem. A 2013, 1, 4671.
- 36A. B. Samui, P. Sivaraman, Polym. Electrolytes 2010, 431.
10.1533/9781845699772.2.431 Google Scholar
- 37W. G. Moon, G.-P. Kim, M. Lee, H. D. Song, J. Yi, ACS Appl. Mater. Interfaces 2015, 7, 3503.
- 38D. Aradilla, F. Estrany, C. Alemán, J. Phys. Chem. C 2011, 115, 8430.
- 39Z. Zhao, G. F. Richardson, Q. Meng, S. Zhu, H.-C. Kuan, J. Ma, Nanotechnology 2016, 27, 042001.
- 40Z. Zhao, G. F. Richardson, Q. Meng, S. Zhu, H. C. Kuan, J. Ma, Nanotechnology 2015, 27, 042001.
- 41D. Kasprzak, I. Stępniak, M. Galiński, J. Solid State Electrochem. 2018, 22, 3035.
- 42P. Kumar, Z. Yi, S. Zhang, A. Sekar, F. Soavi, F. Cicoira, Appl. Phys. Lett. 2015, 107, 053303.
- 43S. Ban, J. Zhang, L. Zhang, K. Tsay, D. Song, X. Zou, Electrochim. Acta 2013, 90, 542.
- 44C. J. Zhang, T. M. Higgins, S.-H. Park, S. E. O'Brien, D. Long, J. N. Coleman, V. Nicolosi, Nano Energy 2016, 28, 495.